Deep neural network approximation theory

Dmytro Perekrestenko

August 2021

joint work with D. Elbrächter, P. Grohs, S. Müller, L. Eberhard and H. Bölcskei

Our goals

- We study the **fundamental limits** of deep neural network learning.
- We assume an **optimal learning algorithm** and access to **infinite amounts of data**.
- We want to understand **fundamental limits** in representing functional relationships Φ (learned in practice) in the form

$$\Phi := W_L \circ \rho \circ W_{L-1} \circ \rho \circ \cdots \circ \rho \circ W_1$$

■ We work in two settings: function approximation - $\|\Phi - f\|_{\infty} \le \varepsilon$ and probability distribution approximation - $W(\Phi \# U, f) \le \varepsilon$.

Neural networks

Neural networks

A map $\Phi: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ given by $\Phi:= W_L \circ \rho \circ W_{L-1} \circ \rho \circ \cdots \circ \rho \circ W_1$

is called a neural network (NN).

- Affine maps: $W_{\ell} = A_{\ell}x + b_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell \in \{1, 2, \dots, L\}$
- Non-linearity or activation function: $\rho: x \to \max(0,x)$ acts component-wise
- \blacksquare Network connectivity: $\mathcal{M}(\Phi)$ total number of non-zero parameters in W_ℓ
- \blacksquare Depth of network or number of layers: $\mathcal{L}(\Phi):=L$
- Width of network: $\mathcal{W}(\Phi) := \max_{\ell=0,\dots,L} N_{\ell}$

We denote by $\mathcal{N}_{d,d'}$ the set of all ReLU networks with input dimension $N_0 = d$ and output dimension $N_L = d'$. $\mathcal{N}_{1,d}$

Generation of photographs of human faces

Examples of Photorealistic GAN-Generated Faces [Karras et al., 2018]

Text-to-image translation

Example of Textual Descriptions and GAN-Generated Photographs of Birds [Zhang et al., 2017]

Photo inpainting

Example of GAN-Generated Photograph Inpainting Using Context Encoders [Pathak et al., 2016]

And much more ...

- Generation of Realistic Photographs
- Generation of Cartoon Characters
- Image-to-Image Translation
- Semantic-Image-to-Photo Translation
- Face Frontal View Generation
- Generate New Human Poses
- Photos to Emojis
- Photograph Editing
- Face Aging
- Photo Blending
- Super Resolution
- Clothing Translation
- Video Prediction
- 3D Object Generation

- Limits of learning functions
 - Approximation of basic functions, namely x^2 , polynomials, and sinusoids
 - Approximation of function classes
 - Optimal representability
- Limits of learning distributions
 - Transporting between 1-dimensional distributions
 - Transporting to arbitrary high-dimensional distributions
 - Optimality of the generative network

Sawtooth function

Sawtooth function $g:[0,1] \rightarrow [0,1]$,

$$g(x) = \begin{cases} 2x, & \text{if } x < \frac{1}{2}, \\ 2(1-x), & \text{if } x \ge \frac{1}{2}, \end{cases}$$

let $g_1(x) = g(x)$, and define the "sawtooth" function of order s as the s-fold composition of g with itself according to

NN realize sawtooth as $g(x) = 2\rho(x) - 4\rho(x - 1/2) + 2\rho(x - 1)$.

Approximation of x^2

Image credit: [Yarotsky, 2017]

Follow-up results

Multiplication realized as a linear combination of squaring networks:

$$xy = \frac{1}{2} \left((x+y)^2 - x^2 - y^2 \right)$$

Proposition (Polynomial approximation)

There exists a constant C > 0 such that for all $m \in \mathbb{N}$, $a = (a_i)_{i=0}^m \in \mathbb{R}^{m+1}$, $D \in \mathbb{R}_+$, and $\varepsilon \in (0, 1/2)$, there is a network $\Phi_{a,D,\varepsilon} \in \mathcal{N}_{1,1}$ with $\mathcal{L}(\Phi_{a,D,\varepsilon}) \leq Cm(\log(1/\varepsilon) + m\log(\lceil D \rceil) + \log(\lceil \|a\|_{\infty})))$, $\mathcal{W}(\Phi_{a,D,\varepsilon}) \leq 9$, and satisfying

$$\|\Phi_{a,D,\varepsilon}(x) - \sum_{i=0}^m a_i x^i\|_{L^{\infty}([-D,D])} \le \varepsilon.$$

Approximation of periodic functions

Main idea: Taylor series approximation of one period and periodic extension through "sawtooth" function.

Theorem (Cosine approximation)

There exists a constant C > 0 such that for every $a, D \in \mathbb{R}_+$, $\varepsilon \in (0, 1/2)$, there is a network $\Psi_{a,D,\varepsilon} \in \mathcal{N}_{1,1}$ with $\mathcal{L}(\Psi_{a,D,\varepsilon}) \leq C((\log(1/\varepsilon))^2 + \log(\lceil aD \rceil)), \mathcal{W}(\Psi_{a,D,\varepsilon}) \leq 9$, and satisfying

$$\|\Psi_{a,D,\varepsilon}(x) - \cos(ax)\|_{L^{\infty}([-D,D])} \le \varepsilon.$$

Approximation of periodic functions con't

 $x \mapsto \cos(2\pi x)$ is 1-periodic and even. Recall the "sawtooth" functions $g_s \colon [0,1] \to [0,1]$ and note that

$$\cos(2\pi 2^s x) = \cos(2\pi g_s(x)).$$

This "periodization trick" avoids coefficients of exponential magnitude, coming from Taylor polynomial for $\cos(ax)$.

Exponential approximation accuracy

■ Approximating network has finite width and depth scaling poly-log in 1/ε.

Owing to

$$\mathcal{M}(\Phi) \leq \mathcal{L}(\Phi) \mathcal{W}(\Phi)(\mathcal{W}(\Phi)+1),$$

we have

$$\varepsilon \le 2^{-(\mathcal{M}(\Phi))^{1/p}}.$$

■ Finite width combined with poly-log (in 1/ε) depth yields exponential error decay in connectivity.

Definition

Let $d \in \mathbb{N}$, $\Omega \subset \mathbb{R}^d$, and consider compact $\mathcal{C} \subset L^2(\Omega)$, to which we refer as **function class**.

Encoders and decoders:

$$\mathfrak{E}^{\ell} := \left\{ E : \mathcal{C} \to \{0,1\}^{\ell} \right\} \qquad \mathfrak{D}^{\ell} := \left\{ D : \{0,1\}^{\ell} \to L^2(\Omega) \right\}$$

Complexity is measured in the number of bits needed to store C.

- Classical encoders dictionaries (countable set of functions).
- We develop theory for neural network encoders.

Optimal exponent

Definition

Minimax code length:

$$L(\varepsilon, \mathcal{C}) := \min \left\{ \ell \in \mathbb{N} : \exists (E, D) \in \mathfrak{E}^{\ell} \times \mathfrak{D}^{\ell} : \sup_{f \in \mathcal{C}} \|D(E(f)) - f\|_{L^{2}(\Omega)} \leq \varepsilon \right\}$$

Optimal exponent:

$$\gamma^*(\mathcal{C}) := \sup\left\{\gamma \in \mathbb{R} : L(\varepsilon, \mathcal{C}) \in \mathcal{O}\left(\varepsilon^{-1/\gamma}\right), \varepsilon \to 0\right\}$$

γ*(C) quantifies "description complexity" of function class C
Larger γ*(C) ⇒ smaller growth rate ⇒ smaller memory requirements for storing signals f ∈ C

Nonlinear approximation through dictionaries

For a function class $\mathcal{C} \subset L^2(\Omega)$, and a dictionary $\mathcal{D} = (\varphi_i)_{i \in I} \subset L^2(\Omega)$, $\gamma^*(\mathcal{C}, \mathcal{D})$ is defined as the supremal $\gamma > 0$ in

$$\sup_{f \in \mathcal{C}} \inf_{\substack{I_M \subseteq I, \\ \#I_M = M, (c_i)_{i \in I_M}}} \left\| f - \sum_{i \in I_M} c_i \varphi_i \right\|_{L^2(\Omega)} \in \mathcal{O}(M^{-\gamma}), \ M \to \infty$$

- **Restrict search** for the M elements in \mathcal{D} to the first $\pi(M)$ elements.
- Require that the coefficients c_i be uniformly bounded so that they can be quantized and stored with a finite number of bits.

If $\gamma^*(\mathcal{C}, \mathcal{D})$ satisfying these conditions is equal $\gamma^*(\mathcal{C})$, we say that the function class \mathcal{C} is **optimally representable** by \mathcal{D} .

Function classes and their optimal exponents

Class	F	optimal dictionary	$\gamma^*(\mathcal{C})$
L^2 -Sobolev	W_2^m	Fourier or Wavelet	m
L^p -Sobolev *	W_p^m	Wavelet	m/d
Hölder	C^{α}	Wavelet	α
Bump Algebra	$B^{1}_{1,1}$	Wavelet	1
Bounded Variation	BV	Haar	1
Besov**	$B_{p,q}^m$	Wavelet	m/d
Modulation***	$M_{p,p}^s$	Wilson	$\frac{1}{1/p - 1/2 + 2s/d}$

*
$$p \in [1, \infty], m > d(1/p - 1/2)_+$$

** $p, q \in (0, \infty], m > d(1/p - 1/2)_+$
*** 1

Approximation with deep neural networks

- We develop the **new concept** of **best** *M*-weight approximation through deep neural networks
- Neural network interpreted as an encoder and its complexity is measured in terms of number of bits needed to store network topology and quantized weights

Best M-weight approximation

For a function class $\mathcal{C}\subseteq L^2(\Omega),\,\gamma^*_{\mathcal{N}}(\mathcal{C})$ is defined as the supremal $\gamma>0$ in

$$\sup_{f \in \mathcal{C}} \inf_{\substack{\Phi \in \mathcal{N}_{d,1} \\ \mathcal{M}(\Phi) \le M}} \|f - \Phi\|_{L^2(\Omega)} \in \mathcal{O}(M^{-\gamma}), \ M \to \infty.$$

- Infimum over all possible network topologies. The rate benchmarks all learning algorithms that map an f and an ε > 0 to a neural network.
- In order to encode, we additionally need **polylogarithmic depth** and **polynomial weight growth** in *M*.

If $\gamma^*_{\mathcal{N}}(\mathcal{C})$ satisfying these conditions is equal $\gamma^*(\mathcal{C})$, we say that the function class \mathcal{C} is **optimally representable by neural networks**.

Transitioning from dictionaries to neural networks

- For given C and associated D, we establish conditions guaranteeing the existence of a neural network with connectivity O(M) that achieves the same uniform error over C as best M-term approximation.
- Simply put, if all elements in \mathcal{D} are approximated by a network with exponential error decay in connectivity, then \mathcal{D} is effectively representable by neural networks.
- Leads to a characterization of function classes C that are optimally representable by neural networks.

Affine dictionaries - scaling and translation

Definition (Affine dictionary)

Consider the compactly supported functions

$$g_s := \sum_{k=1}^r c_k^s f(\cdot - b_k), \quad s = 0, \dots, S.$$

We define the affine dictionary $\mathcal{D} \subset L^2(\Omega)$ corresponding to $(g_s)_{s=0}^S$ according to

$$\mathcal{D} := \left\{ g_s^{j,e} := \left(|\det(A_{s,j})|^{\frac{1}{2}} g_s(A_{s,j} \cdot -\delta e) \right) \Big|_{\Omega} \colon s \in [1:S], e \in \mathbb{Z}^d, \\ j \in \mathbb{N}, \text{ and } g_s^{j,e} \neq 0 \right\},$$

and refer to f as the **generator (function) of** \mathcal{D} .

Includes wavelets, ridgelets, curvelets, shearlets, α -shearlets, and more generally α -molecules.

Gabor dictionaries - frequency shifts

Definition (Gabor dictionaries)

Let $d \in \mathbb{N}$, $f \in L^2(\mathbb{R}^d)$, and $x, \xi \in \mathbb{R}^d$. Define the translation operator $T_x \colon L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ according to

 $T_x f(t) := f(t - x)$

and the modulation operator $M_\xi\colon L^2(\mathbb{R}^d)\to L^2(\mathbb{R}^d,\mathbb{C})$ as

$$M_{\xi}f(t) := e^{2\pi i \langle \xi, t \rangle} f(t) = \cos(2\pi \langle \xi, t \rangle) f(t) + i \sin(2\pi \langle \xi, t \rangle) f(t).$$

Let $\Omega \subseteq \mathbb{R}^d$, $\alpha, \beta > 0$, and $g \in L^2(\mathbb{R}^d)$. The Gabor dictionaries $\mathcal{G}(g, \alpha, \beta, \Omega) \subseteq L^2(\Omega)$ is defined as

$$\mathcal{G}(g,\alpha,\beta,\Omega) := \left\{ M_{\xi} T_{x} g \big|_{\Omega} \colon (x,\xi) \in \alpha \mathbb{Z}^{d} \times \beta \mathbb{Z}^{d} \right\}.$$

Includes Wilson bases.

Central result

Optimality of a representation system $\mathcal D$ for a signal class $\mathcal C$ combined with effective representability of $\mathcal D$ by neural networks implies optimal representability of $\mathcal C$ by neural networks.

Optimal dictionaries

Affine dictionaries (e.g. wavelets, ridgelets, curvelets, shearlets, α -shearlets) and Gabor dictionaries are optimally representable by neural networks.

Main results - function approximation

- Deep neural networks provide exponential approximation accuracy for a wide range of functions such as the squaring operation, multiplication, polynomials, sinusoidal functions, and even one-dimensional oscillatory textures and fractal functions.
- Deep neural networks can learn optimally vastly different function classes such as affine dictionaries, Gabor dictionaries, and smooth functions.
- This universality is afforded by a concurrent invariance property of deep networks to translations, scalings, and frequency-shifts.

Generation of multi-dimensional distributions from U[0,1]

We will show that there is no fundamental limitation in going from low dimension to a higher one.

Histogram distributions

Histogram distribution $\mathcal{E}[0,1]_n^2$, d=2, n=4. Transport U[0,1] to an approximation of any given distribution supported on $[0,1]^d$. For illustration purposes we look at d = 2.

ReLU networks and histograms

Takeaway message

For any histogram distribution there exists a ReLU net that generates it from a uniform input. This net realizes an inverse cumulative distribution function (cdf^{-1}) .

Related work

Theorem ([Bailey and Telgarsky, 2018, Th. 2.1], case d = 2)

There exists a ReLU network $\Phi: x \to (x, g_s(x)), \Phi \in \mathcal{N}_{1,d}$ with connectivity $\mathcal{M}(\Phi) \leq Cs$ for some constant C > 0, and of depth $\mathcal{L}(\Phi) \leq s + 1$, such that

$$W(\Phi \# U[0,1], U[0,1]^2) \le \frac{\sqrt{2}}{2^s}.$$

Main proof idea - space-filling property of sawtooth function.

Transporting uniform distribution to higher dimensions

Generating a 3D uniform distribution via $x \to (x, g_3(x), g_6(x))$.

Generalization of the space-filling property

Approximating 2D distributions

 $M: x \to (x, f(g_s(x)))$

Generating a histogram distribution via the transport map $(x, f(g_s(x)))$. Left—the function f(x), center— $f(g_4(x))$, right—a heatmap of the resulting histogram distribution.

Approximating 2D distributions con't

Generating a general 2-D histogram distribution. Left—the function $f_1 = f_3 = f_{marg}$, center— $\sum_{i=0}^3 f_i \Big(g_3 \Big(4x - i \Big) \Big) \Big)$, right—a heatmap of the resulting histogram distribution. The function $f_0 = f_2$ is depicted on the left in the previous slide.

Generalization to d dimensions

Definition

Let $\mathbf{z} \in [0:(n-1)]^d$, $\mathbf{z}_i = \mathbf{z}_{|\mathbb{R}^{i-1}}$, and let $f_{X_i}^{\mathbf{z}_i}$ be the piecewise linear function that satisfies $f_{X_i}^{\mathbf{z}_i} \# U[0,1] = p_{X_i}^{\mathbf{z}_i}$, for all $i \in [1:d]$, and let for all $s \in \mathbb{N}$

$$F_0(x, \mathbf{z}_1, s) := x,$$

 $F_r(x, \mathbf{z}_{r+1}, s) := g_s \left(n f_{X_r}^{\mathbf{z}_r} \left(F_{r-1}(x, \mathbf{z}_r, s) \right) - z_r \right), \ 1 \le r < d.$

We define Z_r recursively as

$$Z_1(x,s) := f_{X_1}^{\mathbf{z}_1}(x),$$

$$Z_r(x,s) := \sum_{\mathbf{z}_r} f_{X_r}^{\mathbf{z}_r} \big(F_{r-1}(x, \mathbf{z}_r, s) \big), \ 1 < r \le d.$$

Generalization to d dimensions con't

- $F_{r-1}(x, \mathbf{z}_r, s)$ sth-order sawtooth function localizing mass $p_{\mathbf{X}}(\mathbf{x}_{|\mathbb{R}^r} \in c_{\mathbf{z}_r})$ on the set $c_{\mathbf{z}_r} \times [0, 1]$ uniformly along the *r*th coordinate.
- $Z_r(x,s)$ modifies the slope per linear region of F_{r-1} to approximate the conditional distributions along the rth coordinate.

Theorem

For every distribution $f_{\mathbf{X}}$ in $\mathcal{E}[0,1]_n^d$, the map

$$M: x \to (Z_1(x,s), Z_2(x,s), \dots, Z_d(x,s))$$

satisfies

$$W(M \# U[0,1], f_{\mathbf{X}}) \le \frac{\sqrt{d}}{n2^s}.$$

Generalization to d dimensions con't

Generating histogram distributions with NNs

Theorem

For any $f_{\mathbf{X}} \in \mathcal{E}[0,1]_n^d$, d > 1, there exists a ReLU network $\Psi \in \mathcal{N}_{1,d}$ with $\mathcal{M}(\Psi) = O(n^d + sn^{d-1})$, $\mathcal{L}(\Psi) = (s+3)d - s$, such that

$$W(\Psi \# U, f_{\mathbf{X}}) \le \frac{\sqrt{d}}{n2^s}.$$

- \blacksquare Error decays exponentially with depth and linearly in n
- Connectivity is in O(n^d) which is of the same order as the number of E[0, 1]^d_n's parameters (n^d − 1).
- Special case n = 1 coincides with [Bailey and Telgarsky, 2018, Th. 2.1].

Theorem

For any distribution ν on $[0,1]^d$, there exists a ReLU network $\Phi \in \mathcal{N}_{1,d}$ with $\mathcal{M}(\Phi) = O(n^d + sn^{d-1})$ and $\mathcal{L}(\Phi) = (s+3)d - s$ such that $W(\Phi \# U, \nu) \leq \frac{\sqrt{d}}{n^{2s}} + \frac{2\sqrt{d}}{n}.$

Takeaway message

ReLU networks have no fundamental limitation in going from low dimension to a higher one.

Definition ([Graf and Luschgy, 2000])

The minimal *n*-term quantization error of a given distribution ν and $n \in \mathbb{N}$ is defined as $V_n(\nu) := \inf\{W(\nu, \mu) : |\operatorname{supp}(\mu)| \le n\}.$

Theorem ([Graf and Luschgy, 2000][Theorem 6.2]),

Let
$$X \sim \nu$$
 with $\mathbb{E} \|X\|^{1+\delta} < \infty$ for some $\delta > 0$, then

 $\lim_{n \to \infty} n^{1/d} V_n(\nu) = C,$

where C > 0 is a constant depending only on d.

Allows to conclude that to encode a probability distribution one needs at least $d \log(\varepsilon^{-1})$ bits.

Lemma

Consider the class of quantized histogram distributions $\tilde{\mathcal{E}}_{\delta}[0,1]_n^d$ and let $\varepsilon \in (0,1/2)$. Then, there exists a set of $\frac{\delta}{n}$ -quantized ReLU networks $\Phi(\varepsilon,\cdot)$ of cardinality $2^{\ell(\varepsilon)}$, where $\ell(\varepsilon) \leq C \log(\varepsilon^{-1})$, with C a constant depending on d, δ, n , such that

$$\sup_{\nu \in \tilde{\mathcal{E}}_{\delta}[0,1]_n^d} W(\Phi(\varepsilon,\nu) \# U,\nu) \le \varepsilon.$$

Complexity of generative networks con't

Lemma

Consider the class of non-singular distributions supported on $[0,1]^d$, denoted by $\mathcal{F}([0,1]^d)$, and let $\varepsilon \in (0,1/2)$. Then, there exists a set of quantized ReLU networks $\Phi(\varepsilon, \cdot)$ of cardinality $2^{\ell(\varepsilon)}$, where $\ell(\varepsilon) \leq C\varepsilon^{-d}\log^2(\varepsilon^{-1})$, with C a constant depending on d, such that

$$\sup_{\nu \in \mathcal{F}([0,1]^d)} W(\Phi(\varepsilon,\nu) \# U,\nu) \le \varepsilon.$$

Main results - distribution generation

- Deep neural networks are able to generate any *d*-dimensional probability distribution with bounded support without incurring a cost relative to generating the *d*-dimensional target distribution from *d* independent random variables.
- For histogram target distributions, the number of bits needed to uniquely encode the corresponding generative network is close to the fundamental limit as dictated by quantization theory.
- This is enabled by a vast generalization of the space-filling approach discovered recently in [Bailey and Telgarsky, 2018].

D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei, Deep neural network approximation theory, IEEE Transactions on Information Theory, invited feature paper, 2021.

D. Perekrestenko, L. Eberhard, and H. Bölcskei, High-dimensional distribution generation through deep neural networks, Partial Differential Equations and Applications, Springer, invited paper, 2021.

Other references

Bailey, B. and Telgarsky, M. J. (2018). Size-noise tradeoffs in generative networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 6489–6499. Curran Associates, Inc.

- Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Probability Distributions. Springer-Verlag, Berlin, Heidelberg.
- Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of gans for improved quality, stability, and variation.

ArXiv, abs/1710.10196.

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and Efros, A. (2016).

Contaxt ancodores Eastura learning by innainting