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Abstract

The first part of this thesis develops fundamental limits of deep neural
network learning by characterizing what is possible if no constraints
are imposed on the learning algorithm and on the amount of train-
ing data. Concretely, we consider Kolmogorov-optimal approximation
through deep neural networks with the guiding theme being a relation
between the complexity of the function (class) to be approximated
and the complexity of the approximating network in terms of con-
nectivity and memory requirements for storing the network topology
and the associated quantized weights. The theory we develop estab-
lishes that deep networks are Kolmogorov-optimal approximants for
markedly different function classes, such as unit balls in Besov spaces
and modulation spaces. In addition, deep networks provide exponential
approximation accuracy—i.e., the approximation error decays expo-
nentially in the number of nonzero weights in the network—of the
multiplication operation, polynomials, sinusoidal functions, and certain
smooth functions. Moreover, this holds true even for one-dimensional
oscillatory textures and the Weierstrass function—a fractal function,
neither of which has previously known methods achieving exponential
approximation accuracy. We also show that in the approximation of
sufficiently smooth functions finite-width deep networks require strictly
smaller connectivity than finite-depth wide networks.

The second part of this thesis shows that every d-dimensional prob-
ability distribution with bounded support can be generated through
deep ReLU networks out of a one-dimensional uniform input distribu-
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tion. What is more, this is possible without incurring a cost—in terms
of approximation error measured in Wasserstein-distance—relative to
generating the d-dimensional target distribution from d independent
random variables. This is enabled by a vast generalization of the space-
filling approach discovered recently in (Bailey and Telgarsky, 2018).
Moreover, our construction elicits the importance of network depth in
driving the Wasserstein distance between the target distribution and its
neural network approximation to zero. Finally, we demonstrate that, for
histogram target distributions, the number of bits needed to uniquely en-
code the corresponding generative network is close to the fundamental
limit as dictated by quantization theory (Graf and Luschgy, 2000).
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Kurzfassung

Im ersten Teil dieser Arbeit werden fundamentale Grenzen des
maschinellen Lernens mit tiefen neuronalen Netzen entwickelt.
Konkret wird charakterisiert was prinzipiell möglich ist, wenn keine
Beschränkungen an den Lernalgorithmus und an die Menge der verfüg-
baren Trainingsdaten bestehen. Dies führt zum neuartigen Konzept
der Kolmogorov-optimalen Approximation durch tiefe neuronale
Netze. Das zugehörige Leitthema ist eine Beziehung zwischen der
Komplexität der zu approximierenden Funktion (bzw. Funktionen-
klasse) und der Komplexität des zugehörigen approximierenden neu-
ronalen Netzes in Bezug auf dessen Konnektivität (bzw. die An-
zahl der zur Darstellung der Netzwerktopologie und der zugehöri-
gen quantisierten Gewichte) nötigen Bits. Die resultierende The-
orie besagt, dass tiefe neuronale Netze Kolmogorov-optimale Ap-
proximation für grundlegend verschiedene Funktionenklassen, wie
z. B. Einheitskugeln in Besov-Räumen und Modulationsräumen, er-
lauben. Darüber hinaus ermöglichen tiefe neuronale Netze exponen-
tielle Approximationsgenauigkeit—d. h., der Approximationsfehler
klingt exponentiell in der Anzahl der von Null verschiedenen Gewichte
im Netz ab—für die Multiplikationsoperation, Polynome, Sinusfunk-
tionen und bestimmte glatte Funktionen. Dies ist sogar für eindimen-
sionale stark oszillierende Funktionen sowie die Weierstraß-Funktion—
eine fraktale Funktion, möglich; für diese beiden Funktionenklassen
ist bisher keine Methode bekannt, die exponentielle Approximations-
genauigkeit erzielt. Wir zeigen auch, dass in der Approximation hinre-
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ichend glatter Funktionen tiefe Netze endlicher Breite strikt kleinere
Konnektivität benötigen als breite Netze endlicher Tiefe.

Im zweiten Teil der Arbeit wird gezeigt, dass jede d-dimensionale
Zufallsvariable mit kompakt getragener Wahrscheinlichkeitsverteilung
durch tiefe ReLU-Netze aus einer eindimensionalen gleichverteilten
Zufallsvariable erzeugt werden kann. Dies ist darüber hinaus möglich
ohne Abstriche im erreichbaren Approximationsfehler—gemessen in
der Wasserstein-Distanz—relativ zur Erzeugung der d-dimensionalen
Zieldichte aus d unabhängigen Zufallsvariablen in Kauf nehmen zu
müssen. Die zugrundeliegende Idee basiert auf einer weitreichenden
Verallgemeinerung des Ansatzes über raumfüllende Kurven, der kür-
zlich in (Bailey and Telgarsky, 2018) entdeckt wurde. Die resultierende
neuartige Konstruktion zeigt auch die Bedeutung von Netzwerktiefe
in der Approximation der Zielverteilung mit beliebiger Genauigkeit
auf. Schließlich zeigen wir, dass die zur eindeutigen Darstellung von
generativen Netzen, die Histogramm-Zielverteilungen approximieren,
benötigte Anzahl an Bits nahe an der durch die Quantisierungstheorie
vorgegebenen fundamentalen Grenze liegt (Graf and Luschgy, 2000).
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CHAPTER 1

Deep neural network approximation

theory

1.1. INTRODUCTION

Triggered by the availability of vast amounts of training data and dras-
tic improvements in computing power, deep neural networks have
become state-of-the-art technology for a wide range of practical ma-
chine learning tasks such as image classification (Krizhevsky et al.,
2012), handwritten digit recognition (LeCun et al., 1995), speech recog-
nition (Hinton et al., 2012), or game intelligence (D. Silver et al., 2016).
For an in-depth overview, we refer to the survey paper (LeCun et al.,
2015) and the recent book (Goodfellow et al., 2016).

A neural network effectively implements a mapping approximating
a function that is learned based on a given set of input-output value
pairs, typically through the backpropagation algorithm (Rumelhart
et al., 1986). Characterizing the fundamental limits of approximation
through neural networks shows what is possible if no constraints are
imposed on the learning algorithm and on the amount of training data
(Anthony and Bartlett, 1999).

The theory of function approximation through neural networks has
a long history dating back to the work by McCulloch and Pitts (Mc-
Culloch and Pitts, 1943) and the seminal paper by Kolmogorov (Kol-
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mogorov, 1957), who showed, when interpreted in neural network par-
lance, that any continuous function of n variables can be represented
exactly through a 2-layer neural network of width 2n+1. However, the
nonlinearities in Kolmogorov’s neural network are highly nonsmooth
and the outer nonlinearities, i.e., those in the output layer, depend on the
function to be represented. In modern neural network theory, one is usu-
ally interested in networks with nonlinearities that are independent of
the function to be realized and exhibit, in addition, certain smoothness
properties. Significant progress in understanding the approximation ca-
pabilities of such networks has been made in (Cybenko, 1989; Hornik,
1991), where it was shown that single-hidden-layer neural networks
can approximate continuous functions on bounded domains arbitrarily
well, provided that the activation function satisfies certain (mild) condi-
tions and the number of nodes is allowed to grow arbitrarily large. In
practice one is, however, often interested in approximating functions
from a given function class C determined by the application at hand.
It is therefore natural to ask how the complexity of a neural network
approximating every function in C to within a prescribed accuracy
depends on the complexity of C (and on the desired approximation
accuracy). The recently developed Kolmogorov-Donoho rate-distortion
theory for neural networks (Bölcskei et al., 2019) formalizes this ques-
tion by relating the complexity of C—in terms of the number of bits
needed to describe any element in C to within prescribed accuracy—to
network complexity in terms of connectivity and memory requirements
for storing the network topology and the associated quantized weights.
The theory is based on a framework for quantifying the fundamental
limits of nonlinear approximation through dictionaries as introduced
by Donoho (Donoho, 1993, 1996).

The purpose of this chapter is to provide a comprehensive, principled,
and self-contained introduction to Kolmogorov-Donoho rate-distortion
optimal approximation through deep neural networks. The idea is to
equip the reader with a working knowledge of the mathematical tools
underlying the theory at a level that is sufficiently deep to enable
further research in the field. Part of this chapter is based on (Bölcskei
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et al., 2019), but extends the theory therein to the rectified linear unit
(ReLU) activation function and to networks with depth scaling in the
approximation error.

The theory we develop educes remarkable universality proper-
ties of finite-width deep networks. Specifically, deep networks are
Kolmogorov-Donoho optimal approximants for vastly different func-
tion classes such as unit balls in Besov spaces (Mallat, 2008) and
modulation spaces (Gröchenig, 2013). This universality is afforded
by a concurrent invariance property of deep networks to time-shifts,
scalings, and frequency-shifts. In addition, deep networks provide ex-
ponential approximation accuracy-i.e., the approximation error decays
exponentially in the number of parameters employed in the approxi-
mant, namely the number of nonzero weights in the network-for vastly
different functions such as the squaring operation, multiplication, poly-
nomials, sinusoidal functions, general smooth functions, and even
one-dimensional oscillatory textures (Demanet and Ying, 2007) and the
Weierstrass function - a fractal function, neither of which has known
methods achieving exponential approximation accuracy.

While we consider networks based on the ReLU1 activation function
throughout, certain parts of our theory carry over to strongly sigmoidal
activation functions of order k ≥ 2 as defined in (Bölcskei et al., 2019).
For the sake of conciseness, we refrain from providing these extensions.

Outline of the chapter. In Section 1.2, we introduce notation, for-
mally define neural networks, and record basic elements needed in
the neural network constructions throughout the chapter. Section 1.3
presents an algebra of function approximation by neural networks. In
Section 1.4, we develop the Kolmogorov-Donoho rate-distortion frame-
work that will allow us to characterize the fundamental limits of deep
neural network learning of function classes. This theory is based on the
concept of metric entropy, which is introduced and reviewed starting
from first principles. Section 1.5 then puts the Kolmogorov-Donoho
framework to work in the context of nonlinear function approximation

1ReLU stands for the Rectified Linear Unit nonlinearity defined as x 7→ max{0, x}.
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with dictionaries. This discussion serves as a basis for the development
of the concept of best M -weight approximation in neural networks
presented in Section 1.6. We proceed, in Section 1.7, with the develop-
ment of a method—termed the transference principle—for transferring
results on function approximation through dictionaries to results on
approximation by neural networks. The purpose of Section 1.8 is to
demonstrate that function classes that are optimally approximated by
affine dictionaries (e.g., wavelets), are optimally approximated by neu-
ral networks as well. In Section 1.9, we show that this optimality
transfer extends to function classes that are optimally approximated by
Weyl-Heisenberg dictionaries. Section 1.10 demonstrates that neural
networks can improve the best-known approximation rates for two
example functions, namely oscillatory textures and the Weierstrass
function, from polynomial to exponential. The final Section 1.11 makes
a formal case for depth in neural network approximation by estab-
lishing a provable benefit of deep networks over shallow networks in
the approximation of sufficiently smooth functions. The Appendices
collect ancillary technical results.

Notation. For a function f(x) : Rd → R and a set Ω ⊆ Rd, we
define ‖f‖L∞(Ω) := sup{|f(x)| : x ∈ Ω}. Lp(Rd) and Lp(Rd,C)
denote the space of real-valued, respectively complex-valued, Lp-
functions. When dealing with the approximation error for simple func-
tions such as, e.g., (x, y) 7→ xy, we will for brevity of exposition and
with slight abuse of notation, make the arguments inside the norm
explicit according to ‖f(x, y)− xy‖Lp(Ω). For a vector b ∈ Rd, we let
‖b‖∞ := maxi=1,...,d |bi|, similarly we write ‖A‖∞ := maxi,j |Ai,j |
for the matrix A ∈ Rm×n. We denote the identity matrix of size n× n
by In. log stands for the logarithm to base 2. For a set X ∈ Rd, we
write |X| for its Lebesgue measure. Constants like C are understood to
be allowed to take on different values in different uses.
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1.2. SETUP AND BASIC RELU CALCULUS

This section defines neural networks, introduces the basic setup as
well as further notation, and lists basic elements needed in the neural
network constructions considered throughout, namely compositions
and linear combinations of neural networks. There is a plethora of
neural network architectures and activation functions in the literature.
Here, we restrict ourselves to the ReLU activation function and consider
the following general network architecture.

Definition 1. Let L ∈ N and N0, N1, . . . , NL ∈ N. A ReLU neural
network Φ is a map Φ : RN0 → RNL given by

Φ =


W1, L = 1
W2 ◦ ρ ◦W1, L = 2
WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3

, (1.1)

where, for ` ∈ {1, 2, . . . , L}, W` : RN`−1 → RN` ,W`(x) :=
A`x + b` are the associated affine transformations with matrices
A` ∈ RN`×N`−1 and (bias) vectors b` ∈ RN` , and the ReLU acti-
vation function ρ : R→ R, ρ(x) := max(0, x) acts component-wise,
i.e., ρ(x1, . . . , xN ) := (ρ(x1), . . . , ρ(xN )). We denote byNd,d′ the set
of all ReLU networks with input dimension N0 = d and output dimen-
sion NL = d′. Moreover, we define the following quantities related to
the notion of size of the ReLU network Φ:

• the connectivity M(Φ) is the total number of nonzero entries
in the matrices A`, ` ∈ {1, 2, . . . , L}, and the vectors b`, ` ∈
{1, 2, . . . , L},

• depth L(Φ) := L,

• widthW(Φ) := max`=0,...,LN`,

• weight magnitude B(Φ) := max`=1,...,L max{‖A`‖∞, ‖b`‖∞}.
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Remark 1. Note that for a given function f : RN0 → RNL , which can
be expressed according to (1.1), the underlying affine transformations
W` are highly nonunique in general (Fefferman, 1994; Elbrächter et al.,
2019). The question of uniqueness in this context is of independent in-
terest and was addressed recently in (Vlačić and Bölcskei, 2021b,a).
Whenever we talk about a given ReLU network Φ, we will either explic-
itly or implicitly associate Φ with a given set of affine transformations
W`.
N0 is the dimension of the input layer indexed as the 0-th layer,

N1, . . . , NL−1 are the dimensions of theL−1 hidden layers, andNL is
the dimension of the output layer. Our definition of depth L(Φ) counts
the number of affine transformations involved in the representation
(1.1). Single-hidden-layer neural networks hence have depth 2 in this
terminology. Finally, we consider standard affine transformations as
neural networks of depth 1 for technical purposes.

The matrix entry (A`)i,j represents the weight associated with the
edge between the j-th node in the (` − 1)-th layer and the i-th node
in the `-th layer, (b`)i is the weight associated with the i-th node in
the `-th layer. These assignments are schematized in Figure 1.1. The
real numbers (A`)i,j and (b`)i are referred to as the network’s edge
weights and node weights, respectively.

Throughout the chapter, we assume that every node in the input
layer and in layers 1, . . . , L − 1 has at least one outgoing edge and
every node in the output layer L has at least one incoming edge. These
nondegeneracy assumptions are basic as nodes that do not satisfy them
can be removed without changing the functional relationship realized
by the network.

Finally, we note that the connectivity satisfies

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1).

The term “network” stems from the interpretation of the mapping Φ
as a weighted acyclic directed graph with nodes arranged in hierarchical
layers and edges only between adjacent layers.
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(b2)1 (b2)2

(b1)1 (b1)2 (b1)3

(A2)1,1 (A2)1,2 (A2)2,3

(A1)1,1

(A1)3,3(A1)2,3(A1)1,2

(A1)1,1

A2 =
(

(A2)1,1 (A2)1,2 0
0 0 (A2)2,3

)

A1 =

 (A1)1,1 (A1)1,2 0
0 0 (A1)2,3
0 0 (A1)3,3



Output layer

Hidden layer ρ

Input layer

Fig. 1.1: Assignment of the weights (A`)i,j and (b`)i of a two-layer
network to the edges and nodes, respectively.

We mostly consider the case Φ : Rd → R, i.e., NL = 1, but
emphasize that our results readily generalize to NL > 1.

The neural network constructions provided in the chapter frequently
make use of basic elements introduced next, namely compositions and
linear combinations of networks (Petersen and Voigtlaender, 2018).

Lemma 1. Let d1, d2, d3 ∈ N, Φ1 ∈ Nd1,d2 , and Φ2 ∈
Nd2,d3 . Then, there exists a network Ψ ∈ Nd1,d3 with L(Ψ) =
L(Φ1) + L(Φ2), M(Ψ) ≤ 2M(Φ1) + 2M(Φ2), W(Ψ) ≤
max{2d2,W(Φ1),W(Φ2)}, B(Ψ) = max{B(Φ1),B(Φ2)}, and sat-
isfying

Ψ(x) = (Φ2 ◦ Φ1)(x) = Φ2(Φ1(x)), for all x ∈ Rd1 .
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Proof. The proof is based on the identity x = ρ(x) − ρ(−x). First,
note that by Definition 1, we can write

Φ1 = W 1
L1
◦ ρ ◦W 1

L1−1 ◦ · · · ◦ ρ ◦W 1
1

and
Φ2 = W 2

L2
◦ ρ ◦ · · · ◦W 2

2 ◦ ρ ◦W 2
1 .

Next, let N1
L1−1 denote the width of layer L1 − 1 in Φ1 and let N2

1
denote the width of layer 1 in Φ2. We define the affine transformations
W̃ 1
L1

: RN
1
L1−1 7→ R2d2 and W̃ 2

1 : R2d2 7→ RN2
1 according to

W̃ 1
L1

(x) :=
(

Id2

−Id2

)
W 1
L1

(x) and W̃ 2
1 (y) := W 2

1
((
Id2 −Id2

)
y
)
.

The proof is finalized by noting that the network

Ψ := W 2
L2
◦ ρ ◦ · · · ◦W 2

2 ◦ ρ ◦ W̃ 2
1 ◦ ρ ◦ W̃ 1

L1
◦ ρ ◦W 1

L1−1 ◦ . . .
◦ρ ◦W 1

1

satisfies the claimed properties.

Unless explicitly stated otherwise, the composition of two neural
networks will be understood in the sense of Lemma 1.

In order to formalize the concept of a linear combination of networks
with possibly different depths, we need the following two technical
lemmas which show how to augment network depth while retaining
the network’s input-output relation and how to parallelize networks.

Lemma 2. Let d1, d2,K ∈ N, and Φ ∈ Nd1,d2 with L(Φ) < K.
Then, there exists a network Ψ ∈ Nd1,d2 with L(Ψ) = K,M(Ψ) ≤
M(Φ) + d2W(Φ) + 2d2(K − L(Φ)), W(Ψ) = max{2d2,W(Φ)},
B(Ψ) = max{1,B(Φ)}, and satisfying Ψ(x) = Φ(x) for all x ∈ Rd1 .

Proof. Let W̃j(x) := diag
(
Id2 , Id2

)
x, for j ∈ {L(Φ)+1, . . . ,K−1},

W̃K(x) :=
(
Id2 −Id2

)
x, and note that with

Φ = WL(Φ) ◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1,
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the network

Ψ :=W̃K ◦ ρ ◦ W̃K−1 ◦ ρ ◦ · · · ◦ ρ ◦ W̃L(Φ)+1 ◦ ρ ◦
(
WL(Φ)
−WL(Φ)

)
◦ ρ ◦WL(Φ)−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.

For the sake of simplicity of exposition, we state the following two
lemmas only for networks of the same depth, the extension to the
general case follows by straightforward application of Lemma 2. The
first of these two lemmas formalizes the notion of neural network
parallelization, concretely of combining neural networks implementing
the functions f and g into a neural network realizing the mapping
x 7→ (f(x), g(x)).

Lemma 3. Let n,L ∈ N and, for i ∈ {1, 2, . . . , n}, let di, d′i ∈
N and Φi ∈ Ndi,d′i with L(Φi) = L. Then, there exists a network
Ψ ∈ N∑n

i=1
di,
∑n

i=1
d′
i

with L(Ψ) = L, M(Ψ) =
∑n
i=1M(Φi),

W(Ψ) =
∑n
i=1W(Φi), B(Ψ) = maxi B(Φi), and satisfying

Ψ(x) = (Φ1(x1),Φ2(x2), . . . ,Φn(xn)) ∈ R
∑n

i=1
d′i ,

for x = (x1, x2, . . . , xn) ∈ R
∑n

i=1
di with xi ∈ Rdi , i ∈ N.

Proof. We write the networks Φi as

Φi = W i
L ◦ ρ ◦W i

L−1 ◦ ρ ◦ · · · ◦ ρ ◦W i
1,

with W i
` (x) = Ai`x+ bi`. Furthermore, we denote the layer dimensions

of Φi by N i
0, . . . , N

i
L and set N` :=

∑n
i=1N

i
` , for ` ∈ {0, 1, . . . , L}.

Next, define, for ` ∈ {1, 2, . . . , L}, the block-diagonal matrices A` :=
diag(A1

` , A
2
` , . . . , A

n
` ), the vectors b` = (b1` , b2` , . . . , bn` ), and the affine

transformations W`(x) := A`x+ b`. The proof is concluded by noting
that

Ψ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

satisfies the claimed properties.
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We are now ready to formalize the concept of a linear combination
of neural networks.

Lemma 4. Let n,L, d′ ∈ N and, for i ∈ {1, 2, . . . , n}, let di ∈ N,
ai ∈ R, and Φi ∈ Ndi,d′ with L(Φi) = L. Then, there exists a
network Ψ ∈ N∑n

i=1
di,d′

with L(Ψ) = L,M(Ψ) ≤ ∑n
i=1M(Φi),

W(Ψ) ≤∑n
i=1W(Φi), B(Ψ) = maxi{|ai|B(Φi)}, and satisfying

Ψ(x) =
n∑
i=1

aiΦi(xi) ∈ Rd
′
,

for x = (x1, x2, . . . , xn) ∈ R
∑n

i=1
di with xi ∈ Rdi , i ∈

{1, 2, . . . , n}.

Proof. The proof follows by taking the construction in Lemma 3, re-
placing AL by (a1A

1
L, a2A

2
L, . . . , anA

n
L), bL by

∑n
i=1 aib

i
L, and not-

ing that the resulting network satisfies the claimed properties.

1.3. APPROXIMATION OF MULTIPLICATION,
POLYNOMIALS, SMOOTH FUNCTIONS,
AND SINUSOIDALS

This section constitutes the first part of the chapter dealing with the
approximation of basic function “templates" through neural networks.
Specifically, we shall develop an algebra of neural network approx-
imation by starting with the squaring function, building thereon to
approximate the multiplication function, proceeding to polynomials
and general smooth functions, and ending with sinusoidal functions.

The basic element of the neural network algebra we develop is
based on an approach by Yarotsky (Yarotsky, 2017) and by Schmidt-
Hieber (Schmidt-Hieber, 2020), both of whom, in turn, employed the
“sawtooth” construction from (Telgarsky, 2015).
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We start by reviewing the sawtooth construction underlying our
program. Consider the hat function g : R→ [0, 1],

g(x) = 2ρ(x)−4ρ(x− 1
2 )+2ρ(x−1) =


2x, if 0 ≤ x < 1

2

2(1− x), if 1
2 ≤ x ≤ 1

0, else
,

let g0(x) = x, g1(x) = g(x), and define the s-th order sawtooth
function gs as the s-fold composition of g with itself, i.e.,

gs := g ◦ g ◦ · · · ◦ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

, s ≥ 2. (1.2)

We note that g can be realized by a 2-layer network Φg ∈ N1,1 accord-
ing to Φg := W2 ◦ ρ ◦W1 = g with

W1(x) =

1
1
1

x −
 0

1/2
1

, W2(x) =
(
2 −4 2

)x1
x2
x3

.
The s-th order sawtooth function gs can hence be realized by a network
Φsg ∈ N1,1 according to

Φsg := W2 ◦ ρ ◦Wg ◦ ρ ◦ · · · ◦Wg ◦ ρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s−1

◦W1 = gs (1.3)

with

Wg(x) =

2 −4 2
2 −4 2
2 −4 2

x1
x2
x3

−
 0

1/2
1

 .

The following restatement of (Telgarsky, 2015, Lemma 2.4) summa-
rizes the self-similarity and symmetry properties of gs(x) we will
frequently make use of.
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Fig. 1.2: First three steps of approximating F (x) = x− x2 by an equis-
paced linear interpolation Im at 2m + 1 points.

Lemma 5. For s ∈ N, k ∈ {0, 1, . . . , 2s−1− 1}, it holds that g(2s−1 ·
−k) is supported in

[
k

2s−1 ,
k+1
2s−1

]
,

gs(x) =
2s−1−1∑
k=0

g(2s−1x− k), for x ∈ [0, 1],

and

gs
(

k
2s−1 + x

)
= gs

(
k+1
2s−1 − x

)
, for x ∈

[
0, 1

2s−1

]
.

We are now ready to proceed with the statement of the basic building
block of our neural network algebra, namely the approximation of the
squaring function through deep ReLU networks.

Proposition 1. There exists a constant C > 0 such that for all ε ∈
(0, 1/2), there is a network Φε ∈ N1,1 with L(Φε) ≤ C log(ε−1),
W(Φε) = 3, B(Φε) = 1, Φε(0) = 0, satisfying

‖Φε(x)− x2‖L∞([0,1]) ≤ ε.
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Proof. The proof builds on two rather elementary observations. The
first one concerns the linear interpolation Im : [0, 1]→ R, m ∈ N, of
the function F (x) := x − x2 at the points j

2m , j ∈ {0, 1, . . . , 2m},
and in particular the self-similarity of the refinement step Im → Im+1.
For every m ∈ N, the residual F − Im is identical on each interval
between two points of interpolation (see Figure 1.2). Concretely, let
fm : [0, 2−m]→ [0, 2−2m−2] be defined as fm(x) = 2−mx− x2 and
consider its linear interpolation hm : [0, 2−m] → [0, 2−2m−2] at the
midpoint and the endpoints of the interval [0, 2−m] given by

hm(x) :=
{

2−m−1x, x ∈ [0, 2−m−1]
−2−m−1x+ 2−2m−1, x ∈ [2−m−1, 2−m]

.

Direct calculation shows that

fm(x)− hm(x) =
{
fm+1(x), x ∈ [0, 2−m−1]
fm+1(x− 2−m−1), x ∈ [2−m−1, 2−m]

.

As F = f0 and I1 = h0 this implies that, for all m ∈ N,

F (x)− Im(x) = fm(x− j
2m ), for x ∈ [ j

2m ,
j+1
2m ],

j ∈ {0, 1, . . . , 2m − 1}

and Im =
∑m−1
k=0 Hk, where Hk : [0, 1]→ R is given by

Hk(x) = hk(x− j
2k ), for x ∈ [ j2k ,

j+1
2k ], j ∈ {0, 1, . . . , 2k − 1}.

Thus, we have

sup
x∈[0,1]

|x2 − (x− Im(x))| = sup
x∈[0,1]

|F (x)− Im(x)|

= sup
x∈[0,2−m]

|fm(x)| = 2−2m−2.
(1.4)

The second observation we build on is a manifestation of the saw-
tooth construction described above and leads to economic realizations
of the Hk through k-layer networks with two neurons in each layer;
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a third neuron is used to realize the approximation x − Im(x) to x2.
Concretely, let sk(x) := 2−1ρ(x) − ρ(x − 2−2k−1), and note that,
for x ∈ [0, 1], H0 = s0, we get Hk = sk ◦Hk−1. We can thus con-
struct a network realizing x − Im(x), for x ∈ [0, 1], as follows. Let
A1 := (1, 1, 1)T ∈ R3×1, b1 := (0,−2−1, 0)T ∈ R3,

A` :=

 2−1 −1 0
2−1 −1 0
−2−1 1 1

 ∈ R3×3, b` :=

 0
−2−2`+1

0

 ∈ R3,

for ` ∈ {2, . . . ,m},

and Am+1 := (−2−1, 1, 1) ∈ R1×3, bm+1 = 0. Setting W`(x) :=
A`x+ b`, ` ∈ {1, 2, . . . ,m+ 1}, and

Φ̃m := Wm+1 ◦ ρ ◦Wm ◦ ρ ◦ · · · ◦ ρ ◦W1,

a direct calculation yields Φ̃m(x) = x − ∑m−1
k=0 Hk(x), for x ∈

[0, 1]. The proof is completed upon noting that the networks Φε :=
Φ̃dlog(ε−1)/2e satisfy the claimed properties.

The symmetry properties of gs(x) according to Lemma 5 lead to
the interpolation error in the proof of Proposition 1 being identical in
each interval, with the maximum error taken on at the centers of the
respective intervals. More importantly, however, the approximating
neural networks realize linear interpolation at a number of points that
grows exponentially in network depth. This is a manifestation of the
fact that the number of linear regions in the sawtooth construction
(1.3) grows exponentially with depth, which, owing to Lemma 18, is
optimal. We emphasize that the theory developed in this chapter hinges
critically on this optimality property, which, however, is brittle in the
sense that networks with weights obtained through training will, as
observed in (Hanin and Rolnick, 2019), in general, not exhibit expo-
nential growth of the number of linear regions with network depth.
An interesting approach to neural network training which manages to
partially circumvent this problem was proposed recently in (Fokina
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and Oseledets, 2019). Understanding how the number of linear re-
gions grows in general trained networks and quantifying the impact of
this—possibly subexponential—growth behavior on the approximation-
theoretic fundamental limits of neural networks constitutes a major
open problem.

We proceed to the construction of networks that approximate the
multiplication function over the interval [−D,D]. This will be effected
by using the result on the approximation of x2 just established com-
bined with the polarization identity xy = 1

4 ((x+ y)2 − (x− y)2), the
fact that ρ(x) + ρ(−x) = |x|, and a scaling argument exploiting that
the ReLU function is positive homogeneous, i.e., ρ(λx) = λρ(x), for
all λ ≥ 0, x ∈ R.

Proposition 2. There exists a constantC > 0 such that, for allD ∈ R+
and ε ∈ (0, 1/2), there is a network ΦD,ε ∈ N2,1 with L(ΦD,ε) ≤
C(log(dDe) + log(ε−1)), W(ΦD,ε) ≤ 5, B(ΦD,ε) = 1, satisfying
ΦD,ε(0, x) = ΦD,ε(x, 0) = 0, for all x ∈ R, and

‖ΦD,ε(x, y)− xy‖L∞([−D,D]2) ≤ ε. (1.5)

Proof. We first note that, w.l.o.g., we can assume D ≥ 1 in the fol-
lowing, as for D < 1, we can simply employ the network constructed
for D = 1 to guarantee the claimed properties. The proof builds
on the polarization identity and essentially constructs two squaring
networks according to Proposition 1 which share the neuron respon-
sible for summing up the Hk, preceded by a layer mapping (x, y) to
(|x+y|/(2D), |x−y|/(2D)) and followed by layers realizing the mul-
tiplication by D2 through weights bounded by 1. Specifically, consider
the network Ψ̃m with associated matrices A` and vectors b` given by

A1 := 1
2D


1 1
−1 −1
1 −1
−1 1

 ∈ R4×2, b1 := 0 ∈ R4,
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A2 :=


1 1 0 0
1 1 0 0
1 1 −1 −1
0 0 1 1
0 0 1 1

 ∈ R5×4, b2 :=


0
−2−1

0
0
−2−1

 ,

A` :=


2−1 −1 0 0 0
2−1 −1 0 0 0
−2−1 1 1 2−1 −1

0 0 0 2−1 −1
0 0 0 2−1 −1

 ∈ R5×5,

b` :=


0

−2−2`+3

0
0

−2−2`+3

 , for ` ∈ {3, . . . ,m+ 1},

and Am+2 := (−2−1, 1, 1, 2−1,−1) ∈ R1×5, bm+2 := 0. A direct
calculation yields

Ψ̃m(x, y) =
(
|x+y|
2D −

m−1∑
k=0

Hk

( |x+y|
2D

))

−
(
|x−y|

2D −
m−1∑
k=0

Hk

( |x−y|
2D

))
= Φ̃m

(
|x+y|
2D

)
− Φ̃m

(
|x−y|

2D

)
,

(1.6)

with Hk and Φ̃m as defined in the proof of Proposition 1. With (1.4)
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this implies

sup
(x,y)∈[−D,D]2

∣∣∣Ψ̃m(x, y)− xy
D2

∣∣∣
= sup

(x,y)∈[−D,D]2

∣∣ (Φ̃m
(
|x+y|
2D

)
− Φ̃m

(
|x−y|

2D

))
−
((
|x+y|
2D

)2
−
(
|x−y|

2D

)2
) ∣∣

≤ 2 sup
z∈[0,1]

|Φ̃m(z)− z2| ≤ 2−2m−1.

(1.7)

Next, let ΨD(x) = D2x be the scalar multiplication network according
to Lemma 14 and take ΦD,ε := ΨD ◦ Ψ̃m(D,ε), where m(D, ε) :=
d2−1(1+log(D2ε−1))e. Then, the error estimate (1.5) follows directly
from (1.7) and Lemma 1 establishes the desired bounds on depth, width,
and weight magnitude. Finally, ΦD,ε(0, x) = ΦD,ε(x, 0) = 0, for all
x ∈ R, follows directly from (1.6).

Remark 2. Note that the multiplication network just constructed has
weights bounded by 1 irrespectively of the size D of the domain. This is
accomplished by trading network depth for weight magnitude according
to Lemma 14.

We proceed to the approximation of polynomials, effected by net-
works that realize linear combinations of monomials, which, in turn,
are built by composing multiplication networks. Before presenting the
specifics of this construction, we hasten to add that a similar approach
was considered previously in (Yarotsky, 2017) and (Schmidt-Hieber,
2020). While there are slight differences in formulation, the main
distinction between our construction and those in (Yarotsky, 2017)
and (Schmidt-Hieber, 2020) resides in their purpose. Specifically, the
goal in (Yarotsky, 2017) and (Schmidt-Hieber, 2020) is to establish,
by way of local Taylor-series approximation, that d-variate, k-times
(weakly) differentiable functions can be approximated in L∞-norm
to within error ε with networks of connectivity scaling according to
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ε−d/k log(ε−1). Here, on the other hand, we will be interested in func-
tions that allow approximation with networks of connectivity scaling
polylogarithmically in ε−1 (i.e., as a polynomial in log(ε−1)). More-
over, for ease of exposition, we will employ finite-width networks.
Polylogarithmic connectivity scaling will turn out to be crucial (see
Sections 1.6-1.9) in establishing Kolmogorov-Donoho rate-distortion
optimality of neural networks in the approximation of a variety of
prominent function classes. Finally, we would like to mention related
recent work (Schwab and Zech, 2019; Opschoor et al., 2020), (Gühring
et al., 2020) on the approximation of Sobolev-class functions in cer-
tain Sobolev norms enabled by neural network approximations of the
multiplication operation and of polynomials.

Proposition 3. There exists a constant C > 0 such that for all m ∈ N,
a = (ai)mi=0 ∈ Rm+1, D ∈ R+, and ε ∈ (0, 1/2), there is a network
Φa,D,ε ∈ N1,1 with L(Φa,D,ε) ≤ Cm(log(ε−1) + m log(dDe) +
log(m) + log(d‖a‖∞e)),W(Φa,D,ε) ≤ 9, B(Φa,D,ε) ≤ 1, and satis-
fying

‖Φa,D,ε(x)−
m∑
i=0

aix
i‖L∞([−D,D]) ≤ ε.

Proof. As in the proof of Proposition 2 and for the same reason, it
suffices to consider the case D ≥ 1. For m = 1, we simply have an
affine transformation and the statement follows directly from Corollary
2. The proof for m ≥ 2 will be effected by realizing the monomials
xk, k ≥ 2, through iterative composition of multiplication networks
and combining this with a construction that uses the network realizing
xk not only as a building block in the network implementing xk+1 but
also to approximate the partial sum

∑k
i=0 aix

i in parallel.
We start by setting Bk = Bk(D, η) := dDek + η

∑k−2
s=0dDes, k ∈

N, η ∈ R+ and take ΦBk,η to be the multiplication network from
Proposition 2. Next, we recursively define the functions

fk,D,η(x) = ΦBk−1,η(x, fk−1,D,η(x)), k ≥ 2,
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with f0,D,η(x) = 1 and f1,D,η(x) = x. For notational simplicity, we
use the abbreviation fk = fk,D,η in the following. First, we verify that
the fk,D,η approximate monomials sufficiently well. Specifically, we
prove by induction that

‖fk(x)− xk‖L∞([−D,D]) ≤ η
k−2∑
s=0
dDes, (1.8)

for all k ≥ 2. The base case k = 2, i.e.,

‖f2(x)− x2‖L∞([−D,D]) = ‖ΦB1,η(x, x)− x2‖L∞([−D,D]) ≤ η,
follows directly from Proposition 2 upon noting that D ≤ B1 = dDe
(we take the sum in the definition of Bk to equal zero when the upper
limit of summation is negative). We proceed to establish the induction
step (k − 1)→ k with the induction assumption given by

‖fk−1(x)− xk−1‖L∞([−D,D]) ≤ η
k−3∑
s=0
dDes.

As

‖fk−1‖L∞([−D,D])

≤ ‖xk−1‖L∞([−D,D]) + ‖fk−1(x)− xk−1‖L∞([−D,D])

≤ Bk−1,

application of Proposition 2 yields

‖fk(x)− xk‖L∞([−D,D])

≤ ‖fk(x)− xfk−1(x)‖L∞([−D,D]) + ‖xfk−1(x)− xk‖L∞([−D,D])

≤ ‖ΦBk−1,η(x, fk−1(x))− xfk−1(x)‖L∞([−D,D])

+D‖fk−1(x)− xk−1‖L∞([−D,D])

≤ η + dDeη
k−3∑
s=0
dDes

= η

k−2∑
s=0
dDes,
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which completes the induction.
We now construct the network Φa,D,ε approximating the polynomial∑m
i=0 aix

i. To this end, note that there exists a constant C ′ such that
for allm ≥ 2, a = (ai)mi=0 ∈ Rm+1, and i ∈ {1, . . . ,m−1}, there is a
network Ψi

a,D,η ∈ N3,3 withL(Ψi
a,D,η) ≤ C ′(log(η−1)+log(dBie)+

log(‖a‖∞)),W(Ψi
a,D,η) ≤ 9, B(Ψi

a,D,η) ≤ 1, and satisfying

Ψi
a,D,η(x, s, y) = (x, s+ aiy,ΦBi,η(x, y)).

To see that this is, indeed, the case, consider the following chain of
mappings

(x, s, y) (I)−−→ (x, s, y, y) (II)−−→ (x, s+ aiy, y) (III)−−−→ (x, s+ aiy, x, y)
(IV )−−−→ (x, s+ aiy,ΦBi,η(x, y)).

Observe that the mapping (I) is an affine transformation with coeffi-
cients in {0, 1}, which we can simply consider to be a depth-1 network.
The mapping (II) is obtained by using Corollary 2 in order to imple-
ment the affine transformation (s, y) 7→ s+ aiy with weights bounded
by 1, followed by application of Lemmas 2 and 3 to put this network
in parallel with two networks realizing the identity mapping accord-
ing to x = ρ(x) − ρ(−x). Mapping (III) is obtained along the same
lines by putting the result of mapping (II) in parallel with another net-
work realizing the identity mapping. Finally, mapping (IV) is realized
by putting the network ΦBi,η in parallel with two identity networks.
Composing these four networks according to Lemma 1 yields, for
i ∈ {1, . . . ,m − 1}, a network Ψi

a,D,η with the claimed properties.
Next, we employ Corollary 2 to get networks Ψ0

a,D,η which imple-
ment x 7→ (x, a0, x) as well as networks Ψm

a,D,η realizing (x, s, y) 7→
s + amy. Let now η = η(a,D, ε) := (‖a‖∞(m − 1)2dDem−2)−1ε

and define

Φa,D,ε := Ψm
a,D,η ◦Ψm−1

a,D,η ◦ · · · ◦Ψ1
a,D,η ◦Ψ0

a,D,η.
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A direct calculation yields

Φa,D,ε =
m∑
i=0

aifi,D,η.

Hence (1.8) implies∥∥∥Φa,D,ε(x)−
m∑
i=0

aix
i
∥∥∥
L∞([−D,D])

≤
m∑
i=0
|ai|‖fi,D,η(x)− xi‖L∞([−D,D])

≤
m∑
i=2
|ai|
(
η

i−2∑
s=0
dDes

)
≤ ‖a‖∞η

m−2∑
k=0

(m− 1− k)dDek

≤ ‖a‖∞(m− 1)2dDem−2η = ε.

Lemma 1 now establishes thatW(Φa,D,ε) ≤ 9, B(Φa,D,ε) ≤ 1, and

L(Φa,D,ε) ≤
m∑
i=0
L(Ψi

a,D,η)

≤ 2(log(d‖a‖∞e) + 5)

+
m−1∑
i=1

C ′(log(η−1) + log(dBi−1e) + log(d‖a‖∞e))

≤ Cm(log(ε−1) +m log(dDe) + log(m) + log(d‖a‖∞e))
for a suitably chosen absolute constant C. This completes the proof.

Next, we recall that the Weierstrass approximation theorem states
that every continuous function on a closed interval can be approximated
to within arbitrary accuracy by a polynomial.

Theorem 1 ((Stone, 1948)). Let [a, b] ⊆ R and f ∈ C([a, b]). Then,
for every ε > 0, there exists a polynomial π such that

‖f − π‖L∞([a,b]) ≤ ε.
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Proposition 3 hence allows us to conclude that every continuous
function on a closed interval can be approximated to within arbitrary
accuracy by a deep ReLU network of width no more than 9. This
amounts to a variant of the universal approximation theorem (Cybenko,
1989; Hornik, 1991) for finite-width deep ReLU networks. A quantita-
tive statement in terms of making the approximating network’s width,
depth, and weight bounds explicit can be obtained for (very) smooth
functions by applying Proposition 3 to Lagrangian interpolation with
Chebyshev points.

Lemma 6. Consider the set

S[−1,1] :=
{
f ∈ C∞([−1, 1],R) : ‖f (n)(x)‖L∞([−1,1]) ≤ n!,

for all n ∈ N0
}
.

There exists a constant C > 0 such that for all f ∈ S[−1,1] and
ε ∈ (0, 1/2), there is a network Ψf,ε ∈ N1,1 with L(Ψf,ε) ≤
C(log(ε−1))2,W(Ψf,ε) ≤ 9, B(Ψf,ε) ≤ 1, and satisfying

‖Ψf,ε − f‖L∞([−1,1]) ≤ ε.

Proof. A fundamental result on Lagrangian interpolation with Cheby-
shev points (see e.g. (Liang and Srikant, 2017, Lemma 3)) guarantees,
for all f ∈ S[−1,1], m ∈ N, the existence of a polynomial Pf,m of
degree m such that

‖f − Pf,m‖L∞([−1,1]) ≤ 1
(m+1)!2m ‖f (m+1)‖L∞([−1,1]) ≤ 1

2m .

Note that Pf,m can be expressed in the Chebyshev basis (see e.g. (Gil
et al., 2007, Section 3.4.1)) according to Pf,m =

∑m
j=0 cf,m,jTj(x)

with |cf,m,j | ≤ 2 and the Chebyshev polynomials defined through
the two-term recursion Tk(x) = 2xTk−1(x)− Tk−2(x), k ≥ 2, with
T0(x) = 1 and T1(x) = x. We can moreover use this recursion to
conclude that the coefficients of the Tk in the monomial basis are
upper-bounded by 3k. Consequently, we can express Pf,m according

22



to Pf,m =
∑m
j=0 af,m,jx

j with

Af,m := max
j=0,...,m

|af,m,j | ≤ 2(m+ 1)3m.

Application of Proposition 3 to Pf,m in the monomial basis, with
m = dlog(2/ε)e and approximation error ε/2, completes the proof
upon noting that

C ′m(log(2/ε) + log(m) + log(|Af,m|)) ≤ C(log(ε−1))2

for some absolute constant C.

An extension of Lemma 6 to approximation over general intervals is
provided in Lemma 17. While Lemma 6 shows that a specific class of
C∞-functions, namely those whose derivatives are suitably bounded,
can be approximated by neural networks with connectivity growing
polylogarithmically in ε−1, it turns out that this is not possible for gen-
eral (Sobolev-class) k-times differentiable functions (Yarotsky, 2017,
Thm. 4).

We are now ready to proceed to the approximation of sinusoidal
functions. Before stating the corresponding result, we comment on
the basic idea enabling the approximation of oscillatory functions
through deep neural networks. In essence, we exploit the optimality of
the sawtooth construction (1.3) in terms of achieving exponential—in
network depth—growth in the number of linear regions. As indicated in
Figure 1.3, the composition of the cosine function (realized according
to Lemma 6) with the sawtooth function, combined with the symmetry
properties of the cosine function and the sawtooth function, yields
oscillatory behavior that increases exponentially with network depth.

Theorem 2. There exists a constant C > 0 such that for every a,D ∈
R+, ε ∈ (0, 1/2), there is a network Ψa,D,ε ∈ N1,1 with L(Ψa,D,ε) ≤
C((log(ε−1))2 + log(daDe)),W(Ψa,D,ε) ≤ 9, B(Ψa,D,ε) ≤ 1, and
satisfying

‖Ψa,D,ε(x)− cos(ax)‖L∞([−D,D]) ≤ ε.
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Proof. Note that f(x) := (6/π3) cos(πx) is in S[−1,1]. Thus, by
Lemma 6, there exists a constant C > 0 such that for every ε ∈
(0, 1/2), there is a network Φε ∈ N1,1 with L(Φε) ≤ C(log(ε−1))2,
W(Φε) ≤ 9, B(Φε) ≤ 1, and satisfying

‖Φε − f‖L∞([−1,1]) ≤ 6
π3 ε. (1.9)

We now extend this result to the approximation of x 7→ cos(ax) on
the interval [−1, 1] for arbitrary a ∈ R+. This will be accomplished by
exploiting that x 7→ cos(πx) is 2-periodic and even. Let gs : [0, 1]→
[0, 1], s ∈ N, be the s-th order sawtooth functions as defined in (1.2)
and note that, due to the periodicity and the symmetry of the cosine
function (see Figure 1.3 for illustration), we have for all s ∈ N0,
x ∈ [−1, 1],

cos(π2sx) = cos(πgs(|x|)).

For a > π, we define s = s(a) := dlog(a)− log(π)e and α = α(a) :=
(π2s)−1a ∈ (1/2, 1], and note that

cos(ax) = cos(π2sαx) = cos(πgs(α|x|)), x ∈ [−1, 1].

As gs(α|x|) ∈ [0, 1], it follows from (1.9) that

‖π3

6 Φε(gs(α|x|))− cos(ax)‖L∞([−1,1])

= π3

6 ‖Φε(gs(α|x|))− f(gs(α|x|))‖L∞([−1,1]) ≤ ε.
(1.10)

In order to realize Φε(gs(α|x|)) as a neural network, we start from
the networks Φsg defined in (1.3) and apply Proposition 9 to con-
vert them into networks Ψs

g(x) = gs(x), for x ∈ [0, 1], with
B(Ψs

g) ≤ 1, L(Ψs
g) = 7(s + 1), and W(Ψs

g) = 3. Furthermore,
let Ψ(x) := αρ(x) − αρ(−x) = α|x| and take Φmult

π3/6 to be the
scalar multiplication network from Lemma 14. Noting that Ψa,ε :=
Φmult
π3/6 ◦ Φε ◦ Ψs

g ◦ Ψ = Φε(gs(α|x|)) and concluding from Lemma
1 that L(Ψa,ε) ≤ C((log(ε−1))2 + log(dae)), W(Ψa,ε) ≤ 9, and
B(Ψa,ε) ≤ 1, together with (1.10), establishes the desired result for
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a > π and for approximation over the interval [−1, 1]. For a ∈ (0, π),
we can simply take Ψa,ε := Φmult

π3/6 ◦ Φε as x 7→ (6/π3) cos(ax) is in
S[−1,1] in this case.

Finally, we consider the approximation of x 7→ cos(ax) on intervals
[−D,D], for arbitrary D ≥ 1. To this end, we define the networks
Ψa,D,ε(x) := ΨaD,ε( xD ) and observe that

sup
x∈[−D,D]

|Ψa,D,ε(x)− cos(ax)|

= sup
y∈[−1,1]

|Ψa,D,ε(Dy)− cos(aDy)|

= sup
y∈[−1,1]

|ΨaD,ε(y)− cos(aDy)|

≤ ε.

(1.11)

This concludes the proof.
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Fig. 1.3: Approximation of the function cos(2πax) according to Theorem
2 using “sawtooth” functions gs(x) as per (1.2), left a = 2, right
a = 4.

The result just obtained extends to the approximation of x 7→
sin(ax), formalized next, simply by noting that sin(x) = cos(x−π/2).

Corollary 1. There exists a constant C > 0 such that for every a,D ∈
R+, b ∈ R, ε ∈ (0, 1/2), there is a network Ψa,b,D,ε ∈ N1,1 with
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L(Ψa,b,D,ε) ≤ C((log(ε−1))2 + log(daD+ |b|e)),W(Ψa,b,D,ε) ≤ 9,
B(Ψa,b,D,ε) ≤ 1, and satisfying

‖Ψa,b,D,ε(x)− cos(ax− b)‖L∞([−D,D]) ≤ ε.

Proof. For given a,D ∈ R+, b ∈ R, ε ∈ (0, 1/2), consider the
network Ψa,b,D,ε(x) := Ψ

a,D+ |b|a ,ε
(
x− b

a

)
with Ψa,D,ε as defined in

the proof of Theorem 2, and observe that, owing to (1.11),

sup
x∈[−D,D]

|Ψa,b,D,ε(x)− cos(ax− b)|

≤ sup
y∈
[
−(D+ |b|a ),D+ |b|a

] |Ψa,D+ |b|a ,ε
(y)− cos(ay)| ≤ ε.

Remark 3. The results in this section all have approximating networks
of finite width and depth scaling polylogarithmically in ε−1. Owing to

M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1)

this implies that the connectivity scales no faster than polylogarithmic
in ε−1. It therefore follows that the approximation error ε decays (at
least) exponentially fast in the connectivity or equivalently in the num-
ber of parameters the approximant (i.e., the neural network) employs.
We say that the network provides exponential approximation accuracy.

1.4. APPROXIMATION OF FUNCTION
CLASSES AND METRIC ENTROPY

So far we considered the explicit construction of deep neural networks
for the approximation of a wide range of functions, namely polyno-
mials, smooth functions, and sinusoidal functions, in all cases with
exponential accuracy, i.e., with an approximation error that decays
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exponentially in network connectivity. We now proceed to lay the
foundation for the development of a framework that allows us to char-
acterize the fundamental limits of deep neural network approximation
of entire function classes. But first, we provide a review of relevant
literature.

The best-known results on approximation by neural networks are the
universal approximation theorems of Hornik (Hornik, 1991) and Cy-
benko (Cybenko, 1989), stating that continuous functions on bounded
domains can be approximated arbitrarily well by a single-hidden-layer
(L = 2 in our terminology) neural network with sigmoidal activa-
tion function. The literature on approximation-theoretic properties of
networks with a single hidden layer continuing this line of work is
abundant. Without any claim to completeness, we mention work on
approximation error bounds in terms of the number of neurons for
functions with Fourier transforms of bounded first moments (Barron,
1993), (Barron, 1994), the nonexistence of localized approximations
(Chui et al., 1994), a fundamental lower bound on approximation rates
(DeVore et al., 1996; Candès, 1998), and the approximation of smooth
or analytic functions (Mhaskar, 1996; Mhaskar and Micchelli, 1995).

Approximation-theoretic results for networks with multiple hidden
layers were obtained in (Hornik et al., 1989; Mhaskar, 1993) for gen-
eral functions, in (Funahashi, 1989) for continuous functions, and
for functions together with their derivatives in (Nguyen-Thien and
Tran-Cong, 1999). In (Chui et al., 1994) it was shown that for certain
approximation tasks deep networks can perform fundamentally better
than single-hidden-layer networks. We also highlight two recent pa-
pers, which investigate the benefit—from an approximation-theoretic
perspective—of multiple hidden layers. Specifically, in (Eldan and
Shamir, 2016) it was shown that there exists a function which, although
expressible through a small three-layer network, can only be repre-
sented through a very large two-layer network; here size is measured
in terms of the total number of neurons in the network.

In the setting of deep convolutional neural networks first results of
a nature similar to those in (Eldan and Shamir, 2016) were reported
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in (Mhaskar and Poggio, 2016). Linking the expressivity properties of
neural networks to tensor decompositions, (Cohen et al., 2016; Cohen
and Shashua, 2016) established the existence of functions that can be
realized by relatively small deep convolutional networks but require
exponentially larger shallow convolutional networks.

We conclude by mentioning recent results bearing witness to the
approximation power of deep ReLU networks in the context of PDEs.
Specifically, it was shown in (Schwab and Zech, 2019) that deep ReLU
networks can approximate very effectively certain solution families
of parametric PDEs depending on a large (possibly infinite) number
of parameters. The series of papers (Grohs et al., 2018; Berner et al.,
2020; Beck et al., 2018; Elbrächter et al., 2018) constructs and analyzes
a deep-learning-based numerical solver for Black-Scholes PDEs.

For survey articles on approximation-theoretic aspects of neural net-
works, we refer the interested reader to (Ellacott, 1994) and (Pinkus,
1999) as well as the very recent (DeVore et al., 2020). Most closely
related to the framework we develop here is the paper by Shaham,
Cloninger, and Coifman (Shaham et al., 2018), which shows that for
functions that are sparse in specific wavelet frames, the best M -weight
approximation rate (see Definition 8 below) of three-layer neural net-
works is at least as large as the best M -term approximation rate in
piecewise linear wavelet frames.

We begin the development of our framework with a review of a
widely used theoretical foundation for deterministic lossy data com-
pression (DeVore and Lorentz, 1993; DeVore, 1998). Our presentation
essentially follows (Donoho, 1993; Grohs, 2015).

A. Kolmogorov-Donoho Rate Distortion Theory

Let d ∈ N, Ω ⊆ Rd, and consider a set of functions C ⊆ L2(Ω), which
we will frequently refer to as function class. Then, for each ` ∈ N, we
denote by

E` :=
{
E : C → {0, 1}`

}
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the set of binary encoders of C of length `, and we let

D` :=
{
D : {0, 1}` → L2(Ω)

}
be the set of binary decoders of length `. An encoder-decoder pair
(E,D) ∈ E` ×D` is said to achieve uniform error ε over the function
class C, if

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε.

Note that here we quantified the approximation error in L2(Ω)-norm,
whereas in the previous section we used the L∞(Ω)-norm. While
results in terms of L∞(Ω)-norm are stronger, we shall employ the
L2(Ω)-norm in order to parallel the Kolmogorov-Donoho framework
for nonlinear approximation through dictionaries (Donoho, 1993, 1996).
We furthermore note that for sets Ω of finite Lebesgue measure |Ω|, the
two norms are related through ‖f‖L2(Ω) ≤ |Ω|1/2‖f‖L∞(Ω). Finally,
whenever we talk about compactness and related topological notions,
we shall always mean w.r.t. the topology induced by the L2(Ω)-norm.

A quantity of central interest is the minimal length ` ∈ N for which
there exists an encoder-decoder pair (E,D) ∈ E` ×D` that achieves
uniform error ε over the function class C, along with its asymptotic
behavior as made precise in the following definition.

Definition 2. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact.
Then, for ε > 0, the minimax code length L(ε, C) is

L(ε, C) := min
{
` ∈ N :∃(E,D) ∈ E` ×D` :

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε

}
.

(1.12)

Moreover, the optimal exponent γ∗(C) is defined as

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
.
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The optimal exponent γ∗(C) determines the minimum growth rate of
L(ε, C) as the error ε tends to zero and can hence be seen as quantifying
the “description complexity” of the function class C. Larger γ∗(C)
results in smaller growth rate and hence smaller memory requirements
for storing functions f ∈ C such that reconstruction with uniformly
bounded error is possible.

Remark 4. The optimal exponent γ∗(C) can equivalently be thought
of as quantifying the asymptotic behavior of the minimal achievable
error for the function class C with a given code length. Specifically, we
have

γ∗(C) = sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ), ε→ 0

}
= sup

{
γ ∈ R : ε(L) ∈ O

(
L−γ

)
, L→∞

}
,

(1.13)

where

ε(L) := inf
(E,D)∈EL×DL

sup
f∈C
‖D(E(f))− f‖L2(Ω).

The quantity γ∗(C) is closely related to the concept of Kolmogorov-
Tikhomirov epsilon entropy a.k.a. metric entropy (Ott, 2002). We next
make this connection explicit.

B. Metric entropy

Most of the discussion in this subsection, which is almost exclusively
of review nature, follows very closely (Wainwright, 2019, Chapter
5). Consider the metric space (X , ρ) with X a nonempty set and ρ :
X × X → R a distance function. A natural measure for the size of a
compact subset C of X is given by the number of balls of a fixed radius
ε required to cover C, a quantity known as the covering number (for
covering radius ε).

Definition 3. (Wainwright, 2019) Let (X , ρ) be a metric space. An
ε-covering of a compact set C ⊆ X with respect to the metric ρ is a
set {x1, . . . , xN} ⊆ C such that for each x ∈ C, there exists an i ∈
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{1, . . . , N} so that ρ(x, xi) ≤ ε. The ε-covering number N(ε; C, ρ) is
the cardinality of the smallest ε-covering.

An ε-covering is a collection of balls of radius ε that cover the set C,
i.e.,

C ⊆
N(ε; C,ρ)⋃
i=1

B(xi, ε),

where B(xi, ε) is a ball—in the metric ρ—of radius ε centered at
xi. The covering number is nonincreasing in ε, i.e., N(ε; C, ρ) ≥
N(ε′; C, ρ), for all ε ≤ ε′. When the set C is not finite, the covering
number goes to infinity as ε goes to zero. We shall be interested in
the corresponding rate of growth, more specifically in the quantity
logN(ε; C, ρ) known as the metric entropy of C with respect to ρ.
Recall that log is to the base 2, hence the unit of metric entropy is
“bits". The operational significance of metric entropy follows from the
question: What is the minimum number of bits needed to represent
any element x ∈ C with error—quantified in terms of the distance
measure ρ—of at most ε? By what was just developed, the answer to
this question is dlogN(ε; C, ρ)e. Specifically, for a given x ∈ X , the
corresponding encoder E(x) simply identifies the closest ball center
xi and encodes the index i using dlogN(ε; C, ρ)e bits. The correspond-
ing decoder D delivers the ball center xi, which guarantees that the
resulting error satisfies ‖D(E(x))− x‖ ≤ ε.

We proceed with a simple example ((Wainwright, 2019, Example
5.2)) computing an upper bound on the metric entropy of the interval
C = [−1, 1] in R with respect to the metric ρ(x, x′) = |x − x′|.
To this end, we divide C into intervals of length 2ε by setting xi =
−1+2(i−1)ε, for i ∈ [1, L], where L = b 1

εc+1. This guarantees that,
for every point x ∈ [−1, 1], there is an i ∈ [1, L] such that |x−xi| ≤ ε,
which, in turn, establishes

N(ε; C, ρ) ≤
⌊1
ε

⌋
+ 1 ≤ 1

ε
+ 1
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and hence yields an upper bound on metric entropy according to2

logN(ε; C, ρ) ≤ log
(

1
ε

+ 1
)
� log(ε−1), as ε→ 0. (1.14)

This result can be generalized to the d-dimensional unit cube to yield
log(N(ε; C, ρ)) ≤ d log(1/ε+ 1) � d log(ε−1). In order to show that
the upper bound (1.14) correctly reflects metric entropy scaling for
C = [−1, 1] with respect to ρ(x, x′) = |x−x′|, we would need a lower
bound on N(ε; C, ρ) that exhibits the same scaling (in ε) behavior. A
systematic approach to establishing lower bounds on metric entropy is
through the concept of packing, which will be introduced next.

We start with the definition of the packing number of a compact set
C in a metric space (X , ρ).

Definition 4. (Wainwright, 2019, Definition 5.4) Let (X , ρ) be a metric
space. An ε-packing of a compact set C ⊆ X with respect to the metric
ρ is a set {x1, . . . , xN} ⊆ C such that ρ(xi, xj) > ε, for all distinct
i, j. The ε-packing number M(ε;X , ρ) is the cardinality of the largest
ε-packing.

An ε-packing is a collection of nonintersecting balls of radius ε/2
and centered at elements in X . Although different, the covering number
and the packing number provide essentially the same measure of size
of a set as formalized next.

Lemma 7. (Wainwright, 2019, Lemma 5.5) Let (X , ρ) be a metric
space and C a compact set in X . For all ε > 0, the packing and the
covering number are related according to

M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤M(ε; C, ρ).

Proof. (Wainwright, 2019; Prosser, 1966) First, choose a minimal ε-
covering and a maximal 2ε-packing of C. Since no two centers of the

2The notation f(ε) � g(ε), as ε → 0, means that there are constants c, C, ε0 > 0
such that cf(ε) ≤ g(ε) ≤ Cf(ε), for all ε ≤ ε0. For ease of exposition, we shall
usually omit the qualifier ε→ 0.
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2ε-packing can lie in the same ball of the ε-covering, it follows that
M(2ε; C, ρ) ≤ N(ε; C, ρ). To establish N(ε; C, ρ) ≤ M(ε; C, ρ), we
note that, given a maximal packing M(ε; C, ρ), for any x ∈ C, we have
the center of at least one of the balls in the packing within distance
less than ε. If this were not the case, we could add another ball to the
packing thereby violating its maximality. This maximal packing hence
also provides an ε-covering and since N(ε; C, ρ) is a minimal covering,
we must have N(ε; C, ρ) ≤M(ε; C, ρ).

We now return to the example in which we computed an upper
bound on the metric entropy of C = [−1, 1] with respect to ρ(x, x′) =
|x − x′| and show how Lemma 7 can be employed to establish the
scaling behavior of metric entropy. To this end, we simply note that
the points xi = −1 + 2(i− 1)ε, i ∈ [1, L], are separated according to
|xi − xj | = 2ε > ε, for all i 6= j, which implies that M(ε; C, | · |) ≥
L = b1/εc+ 1 ≥ 1

ε . Combining this with the upper bound (1.14) and
Lemma 7, we obtain logN(ε; C, | · |) � log(ε−1). Likewise, it can be
established that logN(ε; C, ‖ · ‖) � d log(ε−1) for the d-dimensional
unit cube. This illustrates how an explicit construction of a packing set
can be used to determine the scaling behavior of metric entropy.

We next formalize the notion that metric entropy is determined by the
volume of the corresponding covering balls. Specifically, the following
result establishes a relationship between a certain volume ratio and
metric entropy.

Lemma 8. (Wainwright, 2019, Lemma 5.7) Consider a pair of norms
‖ · ‖ and ‖ · ‖′ on Rd, and let B and B′ be their corresponding unit
balls, i.e., B = {x ∈ Rd|‖x‖ ≤ 1} and B′ = {x ∈ Rd|‖x‖′ ≤ 1}.
Then, the ε-covering number of B in the ‖ · ‖′-norm satisfies(

1
ε

)d
vol(B)
vol(B′) ≤ N(ε;B, ‖ · ‖′) ≤ vol( 2

εB + B′)
vol(B′) . (1.15)

Proof. (Wainwright, 2019) Let {x1, . . . , xN(ε;B,‖·‖′)} be an ε-covering
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of B in ‖ · ‖′-norm. Then, we have

B ⊆
N(ε;B,‖·‖′)⋃

j=1
{xj + εB′},

which implies vol(B) ≤ N(ε;B, ‖ · ‖′) εd vol(B′), thus establishing
the lower bound in (1.15). The upper bound is obtained by starting with
a maximal ε-packing {x1, . . . , xM(ε;B,‖·‖′)} of B in the ‖ · ‖′-norm.
The balls {xj + ε

2B′, j = 1, . . . ,M(ε;B, ‖ · ‖′)} are all disjoint and
contained within B + ε

2B′. We can therefore conclude that

M(ε;B,‖·‖′)∑
j=1

vol
(
xj + ε

2B
′
)
≤ vol

(
B + ε

2B
′
)
,

and hence

M(ε;B, ‖ · ‖′) vol
(ε

2B
′
)
≤ vol

(
B + ε

2B
′
)
.

Finally, we have vol( ε2B′) = ( ε2 )dvol(B′) and

vol(B + ε

2B
′) = (ε2)dvol(2

ε
B + B′),

which, together with M(ε;B, ‖ · ‖′) ≥ N(ε;B, ‖ · ‖′) due to Lemma
7, yields the upper bound in (1.15).

This result now allows us to establish the scaling of the metric
entropy of unit balls in terms of their own norm, thus yielding a measure
of the massiveness of unit balls in d-dimensional spaces. Specifically,
we set B′ = B in Lemma 8 and get

vol

(
2
ε
B + B′

)
= vol

((
2
ε

+ 1
)
B
)

=
(

2
ε

+ 1
)d

vol(B),

which when used in (1.15) yieldsN(ε;B, ‖·‖) � ε−d and hence results
in metric entropy scaling according to log(N(ε;B, ‖·‖)) � d log(ε−1).
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Particularizing this result to the unit ball Bd∞ = [−1, 1]d and the metric
‖ ·‖∞, we recover the result of our direct analysis in the example above.

So far we have been concerned with the metric entropy of subsets of
Rd. We now proceed to analyzing the metric entropy of function classes,
which will eventually allow us to establish the desired connection
between the optimal exponent γ∗(C) and metric entropy. We begin with
the simple one-parameter function class considered in (Wainwright,
2019, Example 5.9) and follow closely the exposition in (Wainwright,
2019). For a fixed θ, define the real-valued function fθ(x) = 1− e−θx,
and consider the class

P = {fθ : [0, 1]→ R | θ ∈ [0, 1]}.

The set P constitutes a metric space under the sup-norm given by
‖f−g‖L∞([0,1]) = supx∈[0,1] |f(x)−g(x)|. We show that the covering
number of P satisfies

1 +
⌊

1− 1/e
2ε

⌋
≤ N(ε;P, ‖ · ‖L∞([0,1])) ≤

1
2ε + 2,

which leads to the scaling behavior

N(ε;P, ‖ · ‖L∞([0,1])) � ε−1

and hence to metric entropy scaling according to

log(N(ε;P, ‖ · ‖L∞([0,1]))) � log(ε−1).

We start by establishing the upper bound. For given ε ∈ [0, 1], set
T = b 1

2εc, and define the points θi = 2εi, for i = 0, 1, . . . , T . By also
adding the point θT+1 = 1, we obtain a collection of T + 2 points
{θ0, θ1, . . . , θT+1} in [0, 1]. We show that the associated functions
{fθ0 , fθ1 , . . . , fθT+1} form an ε-covering for P . Indeed, for any fθ ∈
P , we can find some θi in the covering such that |θ − θi| ≤ ε. We then
have

‖fθ − fθi‖L∞([0,1]) = max
x∈[0,1]

|e−θx − e−θix| ≤ |θ − θi|,
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where we used, for θ < θi,

max
x∈[0,1]

|e−θx − e−θix| = max
x∈[0,1]

(e−θx − e−θix)

= max
x∈[0,1]

e−θx(1− e−(θi−θ)x)

≤ max
x∈[0,1]

(1− e−(θi−θ)x)

≤ max
x∈[0,1]

(θi − θ)x ≤ θi − θ

= |θ − θi|,
as a consequence of 1−e−x ≤ x, for x ∈ [0, 1], which is easily verified
by noting that the function g(x) = 1 − e−x − x satisfies g(0) = 0
and g′(x) ≤ 0, for x ∈ [0, 1]. The case θ > θi follows similarly. In
summary, we have shown thatN(ε;P, ‖·‖L∞([0,1])) ≤ T+2 ≤ 1

2ε+2.
In order to derive the lower bound, we first bound the packing number

from below and then use Lemma 7. We start by constructing an explicit
packing as follows. Set θ0 = 0 and define θi = − log(1− εi), for all
i such that θi ≤ 1. The largest index T such that this holds is given
by T = b 1−1/e

ε c. Moreover, note that for all i, j with i 6= j, we have
‖fθi − fθj‖L∞([0,1]) ≥ |fθi(1) − fθj (1)| = |ε(i − j)| ≥ ε. We can
therefore conclude that M(ε;P, ‖ · ‖L∞([0,1])) ≥ b 1−1/e

ε c + 1, and
hence, due to the lower bound in Lemma 7,

N(ε;P, ‖ · ‖L∞([0,1])) ≥M(2ε;P, ‖ · ‖L∞([0,1])) ≥
⌊

1− 1/e
2ε

⌋
+ 1,

as claimed. We have thus established that the function class P has
metric entropy scaling according to

log(N(ε;P, ‖ · ‖L∞([0,1]))) � log(1/ε), as ε→ 0.

This rate is typical for one-parameter function classes.
We now turn our attention to richer function classes and start by con-

sidering Lipschitz functions on the d-dimensional unit cube, meaning
real-valued functions on [0, 1]d such that

|f(x)− f(y)| ≤ L‖x− y‖∞, for all x, y ∈ [0, 1]d.
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This class, denoted as FL([0, 1]d), has metric entropy scaling (Kol-
mogorov and Tikhomirov, 1959; Wainwright, 2019)

logN(ε;FL, ‖ · ‖L∞([0,1]d)) � (L/ε)d. (1.16)

Contrasting the exponential dependence of metric entropy in (1.16) on
the ambient dimension d to the linear dependence we identified earlier
for simpler sets such as unit balls in Rd, where we had

logN(ε;B, ‖ · ‖∞) � d log(ε−1),

shows that FL([0, 1]d) is significantly more massive.
We are now ready to relate the optimal exponent γ∗(C) in Definition

2 to metric entropy scaling. All the examples of metric entropy scaling
we have seen exhibit a behavior that fits the law log(N(ε; C, ‖ · ‖)) �
ε−1/γ or log(N(ε; C, ‖·‖)) � ε−1/γ log(ε−1)β . The optimal exponent
is hence a crude measure of growth insensitive to log-factors or similar
factors that are dominated by the growth of ε−1/γ .

While we restrict ourselves to the approximation of functions on
Euclidean domains, the framework described in this section can be
extended to functions on manifolds (see e.g. (Ehler and Filbir, 2018)).
As such, an interesting direction for future research would be the
extension of the deep neural network approximation theory developed
in this chapter to functions on manifolds. First results on the neural
network approximation of functions on manifolds have been reported
in (Shaham et al., 2018; Bölcskei et al., 2019; Schmidt-Hieber, 2019).
For further reading on the general subject of function approximation
on manifolds, we recommend (Mhaskar, 2020) and references therein.

1.5. APPROXIMATION WITH DICTIONARIES

We now show how Kolmogorov-Donoho rate-distortion theory can be
put to work in the context of optimal approximation with dictionar-
ies. Again, this subsection is of review nature. We start with a brief
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discussion of basics on optimal approximation in Hilbert spaces. Specif-
ically, we shall consider two types of approximation, namely linear and
nonlinear.

Let H be a Hilbert space equipped with inner product 〈·, ·〉 and
induced norm ‖ · ‖H and let ek, k = 1, 2, . . . , be an orthonormal
basis forH. For linear approximation, we use the linear spaceHM :=
span{ek : 1 ≤ k ≤ M} to approximate a given element f ∈ H. We
measure the approximation error by

EM (f) := inf
g∈HM

‖f − g‖H.

In nonlinear approximation, we consider best M -term approximation,
which replaces HM by the set ΣM consisting of all elements g ∈ H
that can be expressed as

g =
∑
k∈Λ

ckek,

where Λ ⊆ N is a set of indices with |Λ| ≤M . Note that, in contrast
toHM , the set ΣM is not a linear space as a linear combination of two
elements in ΣM will, in general, need 2M terms in its representation
by the ek. Analogous to EM , we define the error of best M -term
approximation

ΓM (f) := inf
g∈ΣM

‖f − g‖H.

The key difference between linear and nonlinear approximation resides
in the fact that in nonlinear approximation, we can choose the M ele-
ments ek participating in the approximation of f freely from the entire
orthonormal basis whereas in linear approximation we are constrained
to the first M elements. A classical example for linear approximation is
the approximation of periodic functions by the Fourier series elements
corresponding to the M lowest frequencies (assuming natural ordering
of the dictionary). This approach clearly leads to poor approximation
if the function under consideration consists of high-frequency compo-
nents. In contrast, in nonlinear approximation we would seek the M
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frequencies that yield the smallest approximation error. In summary,
it is clear that (nonlinear) best M -term approximation can achieve
smaller approximation error than linear M -term approximation.

We shall consider nonlinear approximation in arbitrary, possibly
redundant, dictionaries, i.e., in frames (Morgenshtern and Bölcskei,
2012), and will exclusively be interested in the case H = L2(Ω),
in particular the approximation error will be measured in terms of
L2(Ω)-norm. Specifically, let C be a set of functions in L2(Ω) and
consider a countable family of functions D := (ϕi)i∈N ⊆ L2(Ω),
termed dictionary.

We consider the best M -term approximation error of f ∈ C in D
defined as follows.

Definition 5. (DeVore and Lorentz, 1993) Given d ∈ N, Ω ⊆ Rd, a
function class C ⊆ L2(Ω), and a dictionary D = (ϕi)i∈N ⊆ L2(Ω),
we define, for f ∈ C and M ∈ N,

ΓDM (f) := inf
If,M ⊆N,

|If,M |=M,(ci)i∈If,M

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

. (1.17)

We call ΓDM (f) the best M -term approximation error of f in D. Every
fM =

∑
i∈If,M ciϕi attaining the infimum in (1.17) is referred to as a

best M -term approximation of f in D. The supremal γ > 0 such that

sup
f∈C

ΓDM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗(C,D). We say that the best M -term approxima-
tion rate of C in the dictionary D is γ∗(C,D).

Function classes C widely studied in the approximation theory litera-
ture include unit balls in Lebesgue, Sobolev, or Besov spaces (DeVore,
1998), as well as α-cartoon-like functions (Grohs et al., 2016a). A
wealth of structured dictionaries D is provided by the area of applied
harmonic analysis, starting with wavelets (Daubechies, 1992), followed
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by ridgelets (Candès, 1998), curvelets (Candès and Donoho, 2002),
shearlets (Guo et al., 2006), parabolic molecules (Grohs and Kutyniok,
2014), and most generally α-molecules (Grohs et al., 2016a), which
include all previously named dictionaries as special cases. Further ex-
amples are Gabor frames (Gröchenig, 2013), Wilson bases (Gröchenig
and Samarah, 2000), and wave atoms (Demanet and Ying, 2007).

The best M -term approximation rate γ∗(C,D) according to Defi-
nition 5 quantifies how difficult it is to approximate a given function
class C in a fixed dictionary D. It is sensible to ask whether for given
C, there is a fundamental limit on γ∗(C,D) when one is allowed to
vary over D. To answer this question, we first note that for every dense
(and countable) D, for any given f ∈ C, by density of D, there exists
a single dictionary element that approximates f to within arbitrary
accuracy thereby effectively realizing a 1-term approximation for arbi-
trary approximation error ε. Formally, this can be expressed through
γ∗(C,D) = ∞. Identifying this single dictionary element or, more
generally, the M elements participating in the best M -term approxima-
tion is in general, however, practically infeasible as it entails searching
through the infinite set D and requires an infinite number of bits to
describe the indices of the participating elements. This insight leads
to the concept of “best M -term approximation subject to polynomial-
depth search” as introduced by Donoho in (Donoho, 1996). Here, the
basic idea is to restrict the search for the elements in D participating in
the best M -term approximation to the first π(M) elements of D, with
π a polynomial. We formalize this under the name of effective best
M -term approximation as follows.

Definition 6. Let d ∈ N, Ω ⊆ Rd, C ⊆ L2(Ω) be compact, and
D = (ϕi)i∈N ⊆ L2(Ω). We define for M ∈ N and π a polynomial

επC,D(M) := sup
f∈C

inf
If,M⊆{1,2,...,π(M)},
|If,M |=M, |ci|≤π(M)

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

(1.18)
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and

γ∗,eff(C,D) := sup{γ ≥ 0: ∃ polynomial π
s.t. επC,D(M) ∈ O(M−γ), M →∞}.

(1.19)
We refer to γ∗,eff(C,D) as the effective best M -term approximation
rate of C in the dictionary D.

Note that we required the coefficients ci in the approximant in Defi-
nition 6 to be polynomially bounded in M . This condition, not present
in (Donoho, 1993; Grohs, 2015) and easily met for generic C and D,
is imposed for technical reasons underlying the transference results
in Section 1.7. Strictly speaking—relative to (Donoho, 1993; Grohs,
2015)—we hence get a subtly different notion of approximation rate.
Exploring the implications of this difference is certainly worthwhile,
but deemed beyond the scope of this chapter.

We next present a central result in best M -term approximation the-
ory stating that for compact C ⊆ L2(Ω), the effective best M -term
approximation rate in any dictionary D is upper-bounded by γ∗(C) and
hence limited by the “description complexity" of C. This endows γ∗(C)
with operational meaning.

Theorem 3. (Donoho, 1993; Grohs, 2015) Let d ∈ N, Ω ⊆ Rd, and
let C ⊆ L2(Ω) be compact. The effective best M -term approximation
rate of the function class C ⊆ L2(Ω) in the dictionary D = (ϕi)i∈N ⊆
L2(Ω) satisfies

γ∗,eff(C,D) ≤ γ∗(C).
In light of this result the following definition is natural (see also

(Grohs, 2015)).

Definition 7. (Kolmogorov-Donoho optimality) Let d ∈ N, Ω ⊆ Rd,
and let C ⊆ L2(Ω) be compact. If the effective best M -term ap-
proximation rate of the function class C ⊆ L2(Ω) in the dictionary
D = (ϕi)i∈N ⊆ L2(Ω) satisfies

γ∗,eff(C,D) = γ∗(C),
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we say that the function class C is optimally representable by D.

As the ideas underlying the proof of Theorem 3 are essential in-
gredients in the development of a kindred theory of best M -weight
approximation rates for neural networks, we present a detailed proof,
which is similar to that in (Grohs, 2015). We perform, however, some
minor technical modifications with an eye towards rendering the proof
a suitable genesis for the new theory of best M -weight approximation
with neural networks, developed in the next section. The spirit of the
proof is to construct, for every given M ∈ N an encoder that, for each
f ∈ C, maps the indices of the dictionary elements participating in
the effective best M -term approximation3 of f , along with the corre-
sponding coefficients ci, to a bitstring. This bitstring needs to be of
sufficient length for the decoder to be able to reconstruct an approxi-
mation to f with an error which is of the same order as that of the best
M -term approximation we started from. As elucidated in the proof, this
can be accomplished while ensuring that the length of the bitstring is
proportional to M log(M), which upon noting that ε = M−γ implies
M = ε−1/γ , establishes optimality.

Proof of Theorem 3. The proof will be based on showing that for every
γ ∈ R+ the following Implication (I) holds: Assume that there exist
a constant C > 0 and a polynomial π such that for every M ∈ N,
the following holds: For every f ∈ C, there are an index set If,M ⊆
{1, 2, . . . , π(M)} and coefficients (ci)i∈If,M ⊆ R with |ci| ≤ π(M)
so that ∥∥f − ∑

i∈If,M

ciϕi
∥∥
L2(Ω) ≤ CM

−γ . (1.20)

This implies the existence of a constant C ′ > 0 such that for every
M ∈ N, there is an encoder-decoder pair (EM , DM ) ∈ E`(M)×D`(M)

3Note that as we have an infimum in (1.18) an effective best M -term approximation
need not exist, but we can pick an M -term approximation that yields an error arbitrarily
close to the infimum.
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with `(M) ≤ C ′M log(M) and

‖f −DM (EM (f))‖L2(Ω) ≤ C ′M−γ . (1.21)

The implication will be proven by explicit construction. For a given f ∈
C, we pick an M -term approximation according to (1.20) and encode
the associated index set If,M and weights ci as follows. First, note
that owing to |If,M | ≤ π(M), each index in If,M can be represented
by at most Cπ log(M) bits; this results in a total of CπM log(M) bits
needed to encode the indices of all dictionary elements participating in
the M -term approximation. The encoder and the decoder are assumed
to know Cπ, which allows stacking of the binary representations of
the indices such that the decoder can read them off uniquely from the
sequence of their binary representations.

We proceed to the encoding of the coefficients ci. First, note that
even though the ci are bounded (namely, polynomially in M ) by as-
sumption, we did not impose bounds on the norms of the dictionary
elements {ϕi}i∈If,M participating in the M -term approximation un-
der consideration. Hence, we can not, in general, expect to be able
to control the approximation error incurred by reconstructing f from
quantized ci. We can get around this by performing a Gram-Schmidt
orthogonalization on the dictionary elements {ϕi}i∈If,M and, as will
be seen later, using the fact that the function class C was assumed to be
compact. Specifically, this Gram-Schmidt orthogonalization yields a
set of functions {ϕ̃i}i∈Ĩ

f,M̃

, with M̃ ≤M , that has the same span as

{ϕi}i∈If,M . Next, we define (implicitly) the coefficients c̃i according
to ∑

i∈Ĩ
f,M̃

c̃iϕ̃i =
∑

i∈If,M

ciϕi. (1.22)
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Now, note that∥∥∥∥∥∥∥∥
∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥∥∥∥f − (f −
∑

i∈Ĩ
f,M̃

c̃iϕ̃i)

∥∥∥∥∥∥∥∥
2

L2(Ω)

≤ ‖f‖2L2(Ω) +

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
2

L2(Ω)

.

Making use of the orthonormality of the ϕ̃i, we can conclude that∑
i∈Ĩ

f,M̃

|c̃i|2 ≤ sup
f∈C
‖f‖2L2(Ω) + C2M−2γ .

As C is compact by assumption, we have supf∈C ‖f‖2L2(Ω) < ∞,
which establishes that the coefficients c̃i are uniformly bounded. This,
in turn, allows us to quantize them, specifically, we shall round the c̃i
to integer multiples of M−(γ+1/2), and denote the resulting rounded
coefficients by ĉi. As the c̃i are uniformly bounded, this results in a
number of quantization levels that is proportional to M (γ+1/2). The
number of bits needed to store the binary representations of the quan-
tized coefficients is therefore proportional to M log(M). Again, the
proportionality constant is assumed known to encoder and decoder,
which allows us to stack the binary representations of the quantized
coefficients in a uniquely decodable manner. The resulting bitstring is
then appended to the bitstring encoding the indices of the participating
dictionary elements. We finally note that the specific choice of the
exponent γ+1/2 is informed by the upper bound on the reconstruction
error we are allowed, this will be made explicit below in the description
of the decoder.

In summary, we have mapped the function f to a bitstring of length
O(M log(M)). The decoder is presented with this bitstring and recon-
structs an approximation to f as follows. It first reads out the indices
of the set If,M and the quantized coefficients ĉi. Recall that this is
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uniquely possible. Next, the decoder performs a Gram-Schmidt or-
thonormalization on the set of dictionary elements indexed by If,M .
The error resulting from reconstructing the function f from the quan-
tized coefficients ĉi rather than the exact coefficients c̃i can be bounded
according to∥∥∥∥∥∥∥∥f −

∑
i∈Ĩ

f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥∥∥f −
∑

i∈Ĩ
f,M̃

c̃iϕ̃i +
∑

i∈Ĩ
f,M̃

c̃iϕ̃i −
∑

i∈Ĩ
f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥∥∥f −
∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥∥∥
∑

i∈Ĩ
f,M̃

(c̃i − ĉi)ϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥∥∥f −
∑

i∈Ĩ
f,M̃

c̃iϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

+

 ∑
i∈Ĩ

f,M̃

|c̃i − ĉi|2


1/2

,

(1.23)

where in the last step we again exploited the orthonormality of the ϕ̃i.
Next, note that due to the choice of the quantizer resolution, we have
|c̃i − ĉi|2 ≤ C ′′M−2γ−1 for some constant C ′′. With M̃ ≤ M this
yields ∑

i∈Ĩ
f,M̃

|c̃i − ĉi|2 ≤ C ′′M−2γ .

Combining (1.20), (1.22), and (1.23), we obtain∥∥∥∥∥∥∥∥f −
∑

i∈Ĩ
f,M̃

ĉiϕ̃i

∥∥∥∥∥∥∥∥
L2(Ω)

≤ C ′M−γ ,
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for some constant C ′. As the length of the bitstring used in this con-
struction is proportional to M log(M), the claim (1.21) is established.

Now, we note that the antecedent of Implication (I) holds for all γ <
γ∗,eff(C,D). Assume next, towards a contradiction, that the antecedent
holds for a γ > γ∗(C). This would imply that for any γ′ < γ,

inf
(E,D)∈EL×DL

sup
f∈C
‖D(E(f))− f‖L2(Ω) ∈ O

(
L−γ

′)
, L→∞.

(1.24)

In particular, (1.24) would hold for some γ′ > γ∗(C) which, owing to
(1.13) stands in contradiction to the definition of γ∗(C). This completes
the proof.

Space C Optimal dictionary γ∗(C)
L2-Sobolev Wm

2 ([0, 1]) U(Wm
2 ([0, 1])) Fourier/Wavelet basis m (Donoho et al., 1998, Sec. 14.2)

Hölder Cα([0, 1]) U(Cα([0, 1])) Wavelet basis α (Donoho et al., 1998, Sec. 14.2)
Bump Algebra B1

1,1([0, 1]) U(B1
1,1([0, 1])) Wavelet basis 1 (Donoho et al., 1998, Sec. 14.2)

Bounded Variation BV ([0, 1]) U(BV ([0, 1])) Haar basis 1 (Donoho et al., 1998, Sec. 14.2)
Lp-Sobolev4 Wm

p (Ω) U(Wm
p (Ω)) Wavelet frame m

d (Grohs et al., 2020, Thm. 1.3)
Besov5 Bmp,q(Ω) U(Bmp,q(Ω)) Wavelet frame m

d (Grohs et al., 2020, Thm. 1.3)
Modulation6 Ms

p,p(Rd) U(Ms
p,p(Rd)) Wilson basis ( 1

p− 1
2 + 2s

d )−1 (Hinrichs et al., 2008, Thm. 4.4)
Cartoon functions7 Eβ([− 1

2 ,
1
2 ]d) α-Curvelet frame8 β(d−1)

2 (Petersen and Voigtlaender, 2018)

Table 1: Optimal exponents and corresponding optimal dictionaries.
U(X) = {f ∈ X : ‖f‖X ≤ 1} denotes the unit ball in the
space X and Ω ⊆ Rd is a Lipschitz domain. Recall that com-
pactness of these unit balls is w.r.t. L2-norm.

The optimal exponent γ∗(C) is known for various function classes
such as unit balls in Besov spaces Bmp,q(Rd) with p, q ∈ (0,∞] and
m > d(1/p− 1/2)+, where γ∗(C) = m/d (see (Grohs et al., 2020)),
and unit balls in (polynomially) weighted modulation spaces Ms

p,p(Rd)
with p ∈ (1, 2) and s ∈ R+, where γ∗(C) = ( 1

p − 1
2 + 2s

d )−1 (see
(Hinrichs et al., 2008)). A further example is the set of β-cartoon-like
functions, which are β-smooth on some bounded d-dimensional domain
with sufficiently smooth boundary and zero otherwise. Here, we have
γ∗(C) = β(d− 1)/2 (see (Donoho, 2001; Grohs et al., 2016b; Petersen
and Voigtlaender, 2018)). These examples along with additional ones
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are summarized in Table 1. For an extensive summary of metric entropy
results and techniques for their derivation, we also refer to (Kolmogorov
and Tikhomirov, 1959).

We conclude this section with general remarks on certain formal
aspects of the Kolmogorov-Donoho rate-distortion framework. First,
we note that for the set C ⊆ L2(Ω) to have a well-defined optimal
exponent it must be relatively compact9. This follows from the fact that
the set over which the minimum in the definition (1.12) of L(ε, C) is
taken must be nonempty for every ε ∈ (0,∞). To see this, note that
every length-L(ε, C) encoder-decoder pair induces an ε-covering of C
with at most 2L(ε,C) balls (and ball centers {D(E(f))}f∈C). It hence
follows that C must be totally bounded and thus relatively compact as a
consequence of L2(Ω) being a complete metric space (Munkres, 2000,
Thm. 45.1).

As shown in the proof of Theorem 3, effective best M -term ap-
proximations construct encoder-decoder pairs and thereby induce
ε-coverings. By the arguments just made, this implies that also
γ∗,eff(C,D) is well-defined only for compact function classes C.

A consequence of the compactness requirement on C is that the
spaces in Table 1 either consist of functions on bounded domains or,
in the case of modulation spaces, are equipped with a weighted norm.
In order to provide intuition on why this must be so, let us consider a
function space (X, ‖ · ‖X) with X ⊆ L2(Rd) and ‖ · ‖X translation
invariant. Take ε > 0 and f ∈ X with ‖f‖X = 1 and choose C > 0
such that ‖f‖L2([−C,C]d) >

4
5‖f‖L2(Rd). Now, consider the family

of translates of f given by fi(x) := f(x − 2Ci), i ∈ Zd, and note
that ‖fi‖X = 1 for all i ∈ Zd by translation invariance of ‖ · ‖X .
Furthermore, we have

‖fi‖L2([−C,C]d) =
(
‖fi‖2L2(Rd) − ‖fi‖2L2(Rd\[−C,C]d)

) 1
2

≤
(
‖f‖2L2(Rd) − ‖f‖2L2([−C,C]d)

) 1
2
< 3

5‖f‖L2(Rd)

9For the sake of simplicity, we assume, however, compactness throughout even though
relative compactness (i.e. having a compact closure) would be sufficient.

48



for all i ∈ Zd\{0} by construction. This, in turn, implies

‖fi − fj‖L2(Rd) = ‖fi−j − f‖L2(Rd)

≥ ‖fi−j − f‖L2([−C,C]d)

> 1
5‖f‖L2(Rd)

(1.25)

for all i, j ∈ Zd, with i 6= j, by the reverse triangle inequality. As
such no ε-ball (w.r.t. L2(Rd)-norm) with ε ≤ 1

10‖f‖L2(Rd) can contain
more than one of the infinitely many (fi)i∈Zd which are, however, all
contained in the unit ball U(X) of the space (X, ‖ · ‖X). This implies
that U(X) cannot be totally bounded and thereby not relatively compact
(w.r.t. L2(Rd)-norm). Somewhat nonchalantly speaking, for spaces
equipped with translation-invariant norms this issue can be avoided by
considering functions that live on a bounded domain, which ensures
that (1.25) pertains only to a finite number of translates. Alternatively,
for spaces of functions living on unbounded domains once can consider
weighted norms that are not translation invariant. Here, the weighting
effectively constrains the functions to a bounded domain.

The less restrictive concept of best M -term approximation rate
γ∗(C,D) (see Definition 5) is, in apparent contrast, often studied for
noncompact function classes C.

In (Donoho et al., 1998, Sec. 15.2) a condition for γ∗,eff(C,D) and
γ∗(C,D) to coincide is presented. Specifically, this condition, referred
to as tail compactness, is expressed as follows. Let C ⊆ L2(Ω) be
bounded and let D = {ϕi}i∈N be an ordered orthonormal basis for C.
We say that tail compactness holds if there exist C, β > 0 such that for
all N ∈ N,

sup
f∈C

∥∥∥∥∥f −
N∑
i=1
〈f, ϕi〉ϕi

∥∥∥∥∥
L2(Ω)

≤ CN−β . (1.26)

In order to see that (1.26) implies γ∗,eff(C,D) = γ∗(C,D), we con-
sider, for fixed f ∈ C, the (unconstrained) best M -term approximation
fM =

∑
i∈I〈f, ϕi〉ϕi with I ⊆ N, |I| = M . We now modify this
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M -term approximation by letting α := dγ∗(C,D)/βe ∈ N and remov-
ing, in the expansion fM =

∑
i∈I〈f, ϕi〉ϕi, all terms corresponding

to indices that are larger than Mα. Recalling that in Definition 6 the
same polynomial π bounds the search depth and the size of the coeffi-
cients, it follows that the modified approximation we just constructed
obeys a polynomial depth search constraint with constraining polyno-
mial πα(x) = xα + S, where S := supf∈C ‖f‖L2(Ω). Here, owing to
orthonormality of D, S accounts for the size of the expansion coef-
ficients 〈f, ϕi〉. In order to complete the argument, we need to show
that the additional approximation error incurred by removing terms in
fM =

∑
i∈I〈f, ϕi〉ϕi is in O(M−γ∗(C,D)), i.e., it is of the same order

as the error corresponding to the original (unconstrained) best M -term
approximation. Due to orthonormality of D this additional error is
given by the norm of

∑
i∈I,i>πα(M)〈f, ϕi〉ϕi and can, by virtue of

(1.26), be bounded as∥∥∥∥∥∥
∑

i∈I,i>πα(M)

〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥
∞∑

i=πα(M)+1

〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥f −
πα(M)∑
i=1
〈f, ϕi〉ϕi

∥∥∥∥∥∥
L2(Ω)

≤ C(πα(M))−β ∈ O(M−γ
∗(C,D)),

which establishes the claim. We have hence shown that under tail com-
pactness of arbitrary rate β > 0, γ∗(C,D) = γ∗,eff(C,D), and hence
there is no cost incurred by imposing a polynomial depth search con-
straint combined with a polynomial bound on the size of the expansion
coefficients. We hasten to add that the assumptions stated at the begin-
ning of this paragraph together with what was just established imply
that γ∗,eff(C,D) is, indeed, well-defined. For the more general case of
D a frame, we refer to (Grohs, 2015, Sec. 5.4.3) for analogous argu-
ments. Finally, we remark that the tail compactness inequality (1.26)
can be interpreted as quantifying the rate of linear approximation for C
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inD. Two examples of pairs (C,D) satisfying tail compactness, namely
Besov spaces with wavelet bases and modulation spaces with Wilson
bases, are provided in Appendices B and C, respectively.

As already mentioned, a larger optimal exponent γ∗(C) leads to
faster error decay (specifically according to L−γ

∗(C)) and hence corre-
sponds to a function class of smaller complexity. As such, techniques
for deriving lower bounds on the optimal exponent are often based on
variations of the approach employed in the proof of Theorem 3, namely
on the explicit construction of encoder-decoder pairs (in the case of the
proof of Theorem 3 by encoding the dictionary elements participating
in the M -term approximation). A powerful method for deriving upper
bounds on the optimal exponent is the hypercube embedding approach
proposed by Donoho in (Donoho, 2001); the basic idea here is to show
that the function class C under consideration contains a sufficiently
complex embedded set of orthogonal hypercubes and to then find the
exponent corresponding to this set. An interesting alternative technique
for deriving optimal exponents was proposed in the context of modula-
tion spaces in (Hinrichs et al., 2008). The essence of this approach is
to exploit the isomorphism between weighted modulation spaces and
weighted mixed-norm sequence spaces (Gröchenig, 2013) and to then
utilize results about entropy numbers of operators between sequence
spaces.

1.6. APPROXIMATION WITH DEEP NEURAL
NETWORKS

Inspired by the theory of best M -term approximation with dictionaries,
we now develop the new concept of best M -weight approximation
through neural networks. At the heart of this theory lies the interpre-
tation of the network weights as the counterpart of the coefficients ci
in best M -term approximation. In other words, parsimony in terms
of the number of participating elements in a dictionary is replaced by
parsimony in terms of network connectivity. Our development will
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parallel that for best M -term approximation in the previous section.
Before proceeding to the specifics, we would like to issue a general

remark. While the neural network approximation results in Section 1.3
were formulated in terms of L∞-norm, we shall be concerned with
L2-norm approximation here, on the one hand paralleling the use of
L2-norm in the context of best M -term approximation, and on the
other hand allowing for the approximation of discontinuous functions
by ReLU neural networks, which, owing to the continuity of the ReLU
nonlinearity, necessarily realize continuous functions.

We start by introducing the concept of bestM -weight approximation
rate.

Definition 8. Given d ∈ N, Ω ⊆ Rd, and a function class C ⊆ L2(Ω),
we define, for f ∈ C and M ∈ N,

ΓNM (f) := inf
Φ∈Nd,1
M(Φ)≤M

‖f − Φ‖L2(Ω). (1.27)

We call ΓNM (f) the best M -weight approximation error of f . The supre-
mal γ > 0 such that

sup
f∈C

ΓNM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗N (C). We say that the best M -weight approxima-
tion rate of C by neural networks is γ∗N (C).

We emphasize that the infimum in (1.27) is taken over all networks
with fixed input dimension d, no more than M nonzero (edge and
node) weights, and arbitrary depth L. In particular, this means that the
infimum is with respect to all possible network topologies and weight
choices. The best M -weight approximation rate is fundamental as it
benchmarks all algorithms that map a function f and an ε > 0 to a
neural network approximating f with error no more than ε.

The two restrictions underlying the concept of effective best M -
term approximation through dictionaries, namely polynomial depth
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search and polynomially bounded coefficients, are next addressed in
the context of approximation through deep neural networks. We start
by noting that the need for the former is obviated by the tree-like-
structure of neural networks. To see this, first note thatW(Φ) ≤M(Φ)
and L(Φ) ≤ M(Φ). As the total number of nonzero weights in the
network can not exceed L(Φ)W(Φ)(W(Φ) + 1), this yields at most
O(M(Φ)3) possibilities for the “locations” (in terms of entries in
the A` and the b`) of theM(Φ) nonzero weights. Encoding the loca-
tions of theM(Φ) nonzero weights hence requires log(

(
CM(Φ)3

M(Φ)
)
) =

O(M(Φ) log(M(Φ))) bits. This assumes, however, that the architec-
ture of the network, i.e., the number of layers L(Φ) and the Nk are
known. Proposition 4 below shows that the architecture can, indeed,
also be encoded with O(M(Φ) log(M(Φ))) bits. In summary, we can
therefore conclude that the tree-like-structure of neural networks auto-
matically guarantees what we had to enforce through the polynomial
depth search constraint in the case of best M -term approximation.

Inspection of the approximation results in Section 1.3 reveals that a
sublinear growth restriction on L(Φ) as a function ofM(Φ) is natural.
Specifically, the approximation results in Section 1.3 all have L(Φ)
proportional to a polynomial in log(ε−1). As we are interested in
approximation error decay according toM(Φ)−γ , see Definition 8, this
suggests to restrict L(Φ) to growth that is polynomial in log(M(Φ)).

The second restriction imposed in the definition of effective best
M -term approximation, namely polynomially bounded coefficients,
will be imposed in monomorphic manner on the magnitude of the
weights. This growth condition will turn out natural in the context of
the approximation results we are interested in and will, together with
polylogarithmic depth growth, be seen below to allow rate-distortion-
optimal quantization of the network weights. We remark, however, that
networks with weights growing polynomially inM(Φ) can be con-
verted into networks with uniformly bounded weights at the expense of
increased—albeit still of polylogarithmic scaling inM(Φ)—depth (see
Proposition 9). In summary, we will develop the concept of “best M -
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weight approximation subject to polylogarithmic depth and polynomial
weight growth”.

We start by introducing the following notation for neural networks
with depth and weight magnitude bounded polylogarithmically respec-
tively polynomially w.r.t. their connectivity.

Definition 9. For M,d, d′ ∈ N, and π a polynomial, we define

N π
M,d,d′ :=

{
Φ ∈ Nd,d′ : M(Φ) ≤M,L(Φ) ≤ π(log(M)),

B(Φ) ≤ π(M)
}
.

Next, we formalize the notion of effective best M -weight approxi-
mation rate subject to polylogarithmic depth and polynomial weight
growth.

Definition 10. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact.
We define for M ∈ N and π a polynomial

επN (M) := sup
f∈C

inf
Φ∈Nπ

M,d,1

‖f − Φ‖L2(Ω)

and

γ∗,eff
N (C) := sup{γ ≥ 0: ∃ polynomial π s.t. επN (M) ∈O(M−γ),

M →∞}.

We refer to γ∗,eff
N (C) as the effective best M -weight approximation rate

of C.

We now state the equivalent of Theorem 3 for approximation by deep
neural networks. Specifically, we establish that the optimal exponent
γ∗(C) constitutes a fundamental bound on the effective best M -weight
approximation rate of C as well.

Theorem 4. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact.
Then, we have

γ∗,eff
N (C) ≤ γ∗(C).
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The key ingredients of the proof of Theorem 4 are developed through-
out this section and the formal proof appears at the end of the section.
Before getting started, we note that, in analogy to Definition 7, what
we just found suggests the following.

Definition 11. Let d ∈ N, Ω ⊆ Rd, and let C ⊆ L2(Ω) be compact.
We say that the function class C ⊆ L2(Ω) is optimally representable by
neural networks if

γ∗,eff
N (C) = γ∗(C).

It is interesting to observe that the fundamental limits of effective
best M -term approximation (through dictionaries) and effective best
M -weight approximation in neural networks are determined by the
same quantity, although the approximants in the two cases are vastly dif-
ferent. We have linear combinations of elements of a dictionary under
polynomial weight growth of the coefficients and with the participating
functions identified subject to a polynomial-depth search constraint in
the former, and concatenations of affine functions followed by nonlin-
earities under polynomial growth constraints on the coefficients of the
affine functions and with a polylogarithmic growth constraint on the
number of concatenations in the latter case.

We now commence the program developing the proof of Theorem
4. As in the arguments in the proof sketch of Theorem 3, the main
idea is to compare the length of the bitstring needed to encode the
approximating network to the minimax code length of the function
class C to be approximated. To this end, we will need to represent the
approximating network’s nonzero weights, its architecture, i.e., L and
theNk, and the nonzero weights’ locations as a bitstring. As the weights
are real numbers and hence require, in principle, an infinite number of
bits for their binary representations, we will have to suitably quantize
them. In particular, the resolution of the corresponding quantizer will
have to increase appropriately with decreasing ε. To formalize this idea,
we start by defining the quantization employed.

Definition 12. Let m ∈ N and ε ∈ (0, 1/2). The network Φ is said
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to have (m, ε)-quantized weights if all its weights are elements of
2−mdlog(ε−1)eZ ∩ [−ε−m, ε−m].

A key ingredient of the proof of Theorem 4 is the following result,
which establishes a fundamental lower bound on the connectivity of
networks with quantized weights achieving uniform error ε over a given
function class C.

Proposition 4. Let d, d′ ∈ N, Ω ⊆ Rd, C ⊆ L2(Ω), and let π be a
polynomial. Further, let

Ψ :
(
0, 1

2
)
× C → Nd,d′

be a map such that for every ε ∈ (0, 1/2), f ∈ C, the network Ψ(ε, f)
has (dπ(log(ε−1))e, ε)-quantized weights and satisfies

sup
f∈C
‖f −Ψ(ε, f)‖L2(Ω) ≤ ε.

Then,

sup
f∈C
M(Ψ(ε, f)) /∈ O

(
ε−1/γ

)
, ε→ 0, for all γ > γ∗(C).

Proof. The proof is by contradiction. Let γ > γ∗(C) and assume that
supf∈CM(Ψ(ε, f)) ∈ O(ε−1/γ), ε → 0. The contradiction will be
effected by constructing encoder-decoder pairs (Eε, Dε) ∈ E`(ε) ×
D`(ε) achieving uniform error ε over C with

`(ε)
≤ C0 · sup

f∈C
(M(Ψ(ε, f)) log(M(Ψ(ε, f))) + 1) (log(ε−1))q

≤ C0

(
ε−1/γ log(ε−1/γ) + 1

)
(log(ε−1))q

≤ C1

(
ε−1/γ(log(ε−1))q+1 + (log(ε−1))q

)
∈ O

(
ε−1/ν

)
, for ε→ 0,

where C0, C1, q > 0 are constants not depending on f, ε and γ >

ν > γ∗(C). The specific form of the upper bound (1.28) will become
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apparent in the construction of the bitstring representing Ψ detailed
below.

We proceed to the construction of the encoder-decoder pairs
(Eε, Dε) ∈ E`(ε) × D`(ε), which will be accomplished by encoding
the network architecture, its topology, and the quantized weights in
bitstrings of length `(ε) satisfying (1.28) while guaranteeing unique
reconstruction (of the network). For the sake of notational simplicity,
we fix ε ∈ (0, 1/2) and f ∈ C and set Ψ := Ψ(ε, f), M := M(Ψ),
and L := L(Ψ). Recall that the number of nodes in layers 0, . . . , L is
denoted by N0, . . . , NL and that N0 = d,NL = d′ (see Definition 1).
Moreover, note that due to our nondegeneracy assumption (see Remark
1) we have

∑L
`=0N` ≤ 2M and L ≤M . The bitstring representing Ψ

is constructed according to the following steps.
Step 1: If M = 0, we encode the network by a single 0. Using the

convention 0 log(0) = 0, we then note that (1.28) holds trivially and
we terminate the encoding procedure. Else, we encode the network
connectivity, M , by starting the overall bitstring with M 1’s followed
by a single 0. The length of this bitstring is therefore given by M + 1.

Step 2: We continue by encoding the number of layers which, due
to L ≤M , requires no more than dlog(M)e bits. We thus reserve the
next dlog(M)e bits for the binary representation of L.

Step 3: Next, we store the layer dimensions N0, . . . , NL. As L ≤M
and N` ≤ M , for all ` ∈ {0, . . . , L}, owing to nondegeneracy, we
can encode the layer dimensions using (M + 1)dlog(M)e bits. In
combination with Steps 1 and 2 this yields an overall bitstring of length
at most

Mdlog(M)e+M + 2dlog(M)e+ 1. (1.28)

Step 4: We encode the topology of the graph associated with the
network Ψ. To this end, we enumerate all nodes by assigning a unique
index i to each one of them, starting from the 0-th layer and increasing
from left to right within a given layer. The indices range from 1 to
N :=

∑L
`=0N` ≤ 2M . Each of these indices can be encoded by a

bitstring of length dlog(N)e. We denote the bitstring corresponding
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to index i by b(i) ∈ {0, 1}dlog(N)e and let for all nodes, except for
those in the last layer, n(i) be the number of children of the node
with index i, i.e., the number of nodes in the next layer connected
to the node with index i via an edge. For each of these nodes i, we
form a bitstring of length n(i)dlog(N)e by concatenating the bitstrings
indexing its children. We follow this string with an all-zeros bitstring
of length dlog(N)e to signal that all children of the current node have
been encoded. Overall, this yields a bitstring of length

N−d′∑
i=1

(n(i) + 1)dlog(N)e ≤ 3Mdlog(2M)e, (1.29)

where we used
∑N−d′
i=1 n(i) ≤M .

Step 5: We encode the weights of Ψ. By assumption, Ψ has
(dπ(log(ε−1))e, ε)-quantized weights, which means that each weight
of Ψ can be represented by no more than

Bε := 2(dπ(log(ε−1))edlog(ε−1)e+ 1)

bits. For each node i = 1, . . . , N , we reserve the first Bε bits to encode
its associated node weight and, for each of its children a bitstring of
length Bε to encode the weight corresponding to the edge between
the current node and that child. Concatenating the results in ascending
order of child node indices, we get a bitstring of length (n(i) + 1)Bε
for node i, and an overall bitstring of length

N−d′∑
i=1

(n(i) + 1)Bε + d′Bε ≤ 3MBε

representing the weights. Combining this with (1.28) and (1.29), we
find that the overall number of bits needed to encode the network
architecture, topology, and weights is no more than

3MBε + 3Mdlog(2M)e+ (M + 2)dlog(M)e+M + 1. (1.30)
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The network can be recovered by sequentially reading out M,L, the
N`, the topology, and the quantized weights from the overall bitstring.
It is not difficult to verify that the individual steps in the encoding
procedure were crafted such that this yields unique recovery. As (1.30)
can be upper-bounded by

C0(M log(M) + 1)(log
(
ε−1))q

for constants C0, q > 0 depending on π only, we have constructed an
encoder-decoder pair (Eε, Dε) ∈ E`(ε) × D`(ε) with `(ε) satisfying
(1.28). This concludes the proof.

Proposition 4 states that the connectivity growth rate of networks
with quantized weights achieving uniform approximation error ε over
a function class C must exceed O

(
ε−1/γ∗(C)) , ε→ 0. As Proposition

4 applies to networks that have each weight represented by a finite
number of bits scaling polynomially in log(ε−1), while guaranteeing
that the underlying encoder-decoder pair achieves uniform error ε over
C, it remains to establish that such a compatibility is, indeed, possible.
Specifically, this requires a careful interplay between the network’s
depth and connectivity scaling, and its weight growth, all as a function
of ε. Establishing that this delicate balancing is implied by our technical
assumptions is the subject of the remainder of this section. We start
with a perturbation result quantifying how the error induced by weight
quantization in the network translates to the output function realized
by the network.

Lemma 9. Let d, d′, k ∈ N, D ∈ R+, Ω ⊆ [−D,D]d, ε ∈ (0, 1/2),
let Φ ∈ Nd,d′ withM(Φ) ≤ ε−k, B(Φ) ≤ ε−k, and let m ∈ N satisfy

m ≥ 3kL(Φ) + log(dDe). (1.31)

Then, there exists a network Φ̃ ∈ Nd,d′ with (m, ε)-quantized weights
satisfying

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ ≤ ε.
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More specifically, the network Φ̃ can be obtained simply by re-
placing every weight in Φ by a closest element in 2−mdlog(ε−1)eZ ∩
[−ε−m, ε−m].

Proof of Theorem 9. We first consider the case L(Φ) = 1. Here, it
follows from Definition 1 that the network simply realizes an affine
transformation and hence

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ ≤M(Φ)dDe2−mdlog(ε−1)e−1 ≤ ε.

In the remainder of the proof, we can therefore assume that L(Φ) ≥ 2.
For simplicity of notation, we set L := L(Φ),M := M(Φ), and, as
usual, write

Φ = WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

with W`(x) = A`x + b`, A` ∈ RN`×N`−1 , and b` ∈ RN` . We now
consider the partial networks Φ` : Ω → RN` , ` ∈ {1, 2, . . . , L − 1},
given by

Φ` :=


ρ ◦W1, ` = 1
ρ ◦W2 ◦ ρ ◦W1, ` = 2
ρ ◦W` ◦ ρ ◦W`−1 ◦ · · · ◦ ρ ◦W1, ` = 3, . . . , L− 1,

and set ΦL := Φ. We hasten to add that we decided—for ease of
exposition—to deviate from the convention used in Definition 1 and
to have the partial networks include the application of ρ at the end.
Now, for ` ∈ {1, 2, . . . , L}, let Φ̃` be the (partial) network obtained
by replacing all the entries of the A` and b` by a closest element in
2−mdlog(ε−1)e Z ∩ [−ε−m, ε−m]. We denote these replacements by
Ã` and b̃`, respectively, and note that

max
i,j
|A`,i,j − Ã`,i,j | ≤ 1

2 2−mdlog(ε−1)e ≤ 1
2 ε

m,

max
i,j
|b`,i,j − b̃`,i,j | ≤ 1

2 2−mdlog(ε−1)e ≤ 1
2 ε

m.
(1.32)
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The proof will be effected by upper-bounding the error building up
across layers as a result of this quantization. To this end, we define, for
` ∈ {1, 2, . . . , L}, the error in the `-th layer as

e` := sup
x∈Ω
‖Φ`(x)− Φ̃`(x)‖∞.

We further set C0 := dDe and C` := max{1, supx∈Ω ‖Φ`(x)‖∞}. As
each entry of the vector Φ`(x) ∈ RN` is obtained by applying10 the
1-Lipschitz function ρ to the sum of a weighted sum of at most N`−1
components of the vector Φ`−1(x) ∈ RN`−1 and a bias component b`,i,
and B(Φ) ≤ ε−k by assumption, we have for all ` ∈ {1, 2, . . . , L},

C` ≤ N`−1ε
−kC`−1 + ε−k ≤ (N`−1 + 1) ε−kC`−1,

which implies, for all ` ∈ {1, 2, . . . , L}, that

C` ≤ C0 ε
−k`

`−1∏
i=0

(Ni + 1). (1.33)

Next, note that the components (Φ̃1(x))i, i ∈ {1, 2, . . . , N1}, of the
vector Φ̃1(x) ∈ RN1 can be written as

(Φ̃1(x))i = ρ

 N0∑
j=1

Ã1,i,jxj

+ b̃1,i

 ,

which, combined with (1.32) and the fact that ρ is 1-Lipschitz implies

e1 ≤ C0N0
εm

2 + εm

2 ≤ C0(N0 + 1) ε
m

2 . (1.34)

Due to ρ and the identity mapping being 1-Lipschitz, we have, for

10Note that going from ΦL−1 to ΦL the activation function is not applied anymore,
which nevertheless leads to the same estimate as the identity mapping is 1-Lipschitz.
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` = 1, . . . , L,

e` = sup
x∈Ω
‖Φ`(x)− Φ̃`(x)‖∞

= sup
x∈Ω,i∈{1,...,N`}

|(Φ`(x))i − (Φ̃`(x))i|

≤ sup
x∈Ω,i∈{1,...,N`}

∣∣∣∣∣
N`−1∑

j=1
A`,i,j(Φ`−1(x))j

+ b`,i


−

N`−1∑
j=1

Ã`,i,j(Φ̃`−1(x))j

+ b̃`,i

 ∣∣∣∣∣
≤ sup
x∈Ω,i∈{1,...,N`}

[(
N`−1∑
j=1

∣∣∣A`,i,j(Φ`−1(x))j

− Ã`,i,j(Φ̃`−1(x))j
∣∣∣)+

∣∣∣b`,i − b̃`,i∣∣∣ ].

(1.35)

As |(Φ`−1(x))j − (Φ̃`−1(x))j | ≤ e`−1 and |(Φ`−1(x))j | ≤ C`−1 for
all x ∈ Ω, j ∈ {1, . . . , N`−1} by definition, and |A`,i,j | ≤ ε−k by
assumption, upon invoking (1.32), we get

|A`,i,j(Φ`−1(x))j − Ã`,i,j(Φ̃`−1(x))j |
≤ e`−1ε

−k + C`−1
εm

2 + e`−1
εm

2 .

Since ε ∈ (0, 1/2), it therefore follows from (1.35), that for all ` ∈
{2, . . . , L},

e` ≤ N`−1(e`−1ε
−k + C`−1

εm

2 + e`−1
εm

2 ) + εm

2

≤ (N`−1 + 1)(2e`−1ε
−k + C`−1

εm

2 ).
(1.36)

We now claim that, for all ` ∈ {2, . . . , L},

e` ≤ 1
2 (2` − 1)C0ε

m−(`−1)k
`−1∏
i=0

(Ni + 1), (1.37)
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which we prove by induction. The base case ` = 1 was already estab-
lished in (1.34). For the induction step we assume that (1.37) holds for
a given ` which, in combination with (1.33) and (1.36), implies

e`+1 ≤
(
N` + 1)(2e`ε−k + C`

εm

2
)

≤ (N` + 1)
(

(2` − 1)C0ε
m−(`−1)kε−k

`−1∏
i=0

(Ni + 1)

+ C0ε
−k` εm

2

`−1∏
i=0

(Ni + 1)
)

= 1
2(2`+1 − 1)C0ε

m−`k
∏̀
i=0

(Ni + 1).

This completes the induction argument and establishes (1.37). Using
2L−1 ≤ ε−(L−1),

∏L−1
i=0 (Ni + 1) ≤ ML ≤ ε−kL, and m ≥ 3kL +

log(dDe) by assumption, we get

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ = eL ≤ 1

2 (2L − 1)C0ε
m−(L−1)k

L−1∏
i=0

(Ni + 1)

≤ εm−(L−1+kL−k+log(dDe)+kL)

≤ εm−(3kL+log(dDe)−1) ≤ ε.

This completes the proof.

We are now ready to finalize the proof of Theorem 4.

Proof of Theorem 4. Suppose towards a contradiction that γ∗,eff
N (C) >

γ∗(C) and let γ ∈
(
γ∗(C), γ∗,eff

N (C)
)
. Then, by Definition 10, there

exist a polynomial π and a constant C > 0 such that

sup
f∈C

inf
Φ∈Nπ

M,d,1

‖f − Φ‖L2(Ω) ≤ CM−γ , for all M ∈ N.

Setting Mε :=
⌈
(ε/(4C))−1/γ⌉, it follows that, for every f ∈ C and

every ε ∈ (0, 1/2), there exists a neural network Φε,f ∈ N π
Mε,d,1 such
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that

‖f − Φε,f‖L2(Ω) ≤ 2 sup
f∈C

inf
Φ∈Nπ

Mε,d,1

‖f − Φ‖L2(Ω) (1.38)

≤ 2CM−γε ≤ ε

2 . (1.39)

By Lemma 9 there exists a polynomial π∗ such that for every f ∈ C, ε ∈
(0, 1/2), there is a network Φ̃ε,f with (dπ∗(log(ε−1))e, ε)-quantized
weights satisfying ∥∥∥Φε,f − Φ̃ε,f

∥∥∥
L2(Ω)

≤ ε

2 . (1.40)

The conditions of Lemma 9 are satisfied as Mε can be upper-bounded
by ε−k with a suitably chosen k, the weights in Φε,f are polynomially
bounded in Mε, and (1.31) follows from the depth of networks in Φ ∈
N π
Mε,d,1 being polylogarithmically bounded in Mε due to Definition 9.

Now, defining

Ψ:
(
0, 1

2
)
× C → Nd,1, (ε, f) 7→ Φ̃ε,f ,

it follows from (1.38) and (1.40), by application of the triangle inequal-
ity, that

sup
f∈C
‖f −Ψ(ε, f)‖L2(Ω) ≤ ε

with
sup
f∈C
M(Ψ(ε, f)) ≤Mε ∈ O

(
ε−1/γ), ε→ 0.

The proof is concluded by noting that Ψ(ε, f) violates Proposition
4.

We conclude this section with a discussion of the conceptual impli-
cations of the results established above. Proposition 4 combined with
Lemma 9 establishes that neural networks achieving uniform approx-
imation error ε while having weights that are polynomially bounded
in ε−1 and depth growing polylogarithmically in ε−1 cannot exhibit
connectivity growth rate smaller than O(ε−1/γ∗(C)), ε → 0; in other
words, a decay of the uniform approximation error, as a function of M ,
faster than O(M−γ∗(C)),M →∞, is not possible.
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1.7. THE TRANSFERENCE PRINCIPLE

We have seen that a wide array of function classes can be approximated
in Kolmogorov-Donoho optimal fashion through dictionaries, provided
that the dictionary D is chosen to consort with the function class C
according to γ∗,eff(C,D) = γ∗(C). Examples of such pairs are unit
balls in Besov spaces with wavelet bases and unit balls in weighted
modulation spaces with Wilson bases. A more extensive list of optimal
pairs is provided in Table 1. On the other hand, as shown in (Donoho,
1993), Fourier bases are strictly suboptimal—in terms of approximation
rate—for balls C of finite radius in the spaces BV (R) and Wm

p (R).
In light of what was just said, it is hence natural to let neural networks

play the role of the dictionary D and to ask which function classes C
are approximated in Kolmogorov-Donoho-optimal fashion by neural
networks. Towards answering this question, we next develop a general
framework for transferring results on function approximation through
dictionaries to results on approximation by neural networks. This will
eventually lead us to a characterization of function classes C that are
optimally representable by neural networks in the sense of Definition
11.

We start by introducing the notion of effective representability of
dictionaries through neural networks.

Definition 13. Let d ∈ N, Ω ⊆ Rd, and D = (ϕi)i∈N ⊆ L2(Ω) be
a dictionary. We call D effectively representable by neural networks,
if there exists a bivariate polynomial π such that for all i ∈ N, ε ∈
(0, 1/2), there is a neural network Φi,ε ∈ Nd,1 satisfyingM(Φi,ε) ≤
π(log(ε−1), log(i)), B(Φi,ε) ≤ π(ε−1, i), and

‖ϕi − Φi,ε‖L2(Ω) ≤ ε.

The next result will allow us to conclude that optimality—in the
sense of Definition 7—of a dictionary D for a function class C com-
bined with effective representability of D by neural networks implies
optimal representability of C by neural networks. The proof is, in
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essence, effected by noting that every element of the effectively repre-
sentable D participating in a best M -term-rate achieving approxima-
tion fM of f ∈ C can itself be approximated by neural networks well
enough for an overall network to approximate fM with connectivity
Mπ(log(M)). As this connectivity is only polylogarithmically larger
than the number of terms M participating in the best M -term approxi-
mation fM , we will be able to conclude that the optimal approximation
rate, indeed, transfers from approximation in D to approximation in
neural networks. The conditions onM(Φi,ε) and B(Φi,ε) in Definition
13 guarantee precisely that the connectivity increase is at most by a
polylogarithmic factor. To see this, we first recall that effective best M -
term approximation has a polynomial depth search constraint, which
implies that the indices i under consideration are upper-bounded by a
polynomial in M . In addition, the approximation error behavior we are
interested in is ε = M−γ . Combining these two insights, it follows that
M(Φi,ε) ≤ π(log(ε−1), log(i)) implies polylogarithmic (in M ) con-
nectivity for each network Φi,ε and hence connectivity Mπ(log(M))
for the overall network realizing fM , as desired. By the same token,
B(Φi,ε) ≤ π(ε−1, i) guarantees that the weights of Φi,ε are polynomial
in M .

There is another aspect to effective representability by neural net-
works that we would like to illustrate by way of example, namely
that of ordering the dictionary elements. Specifically, we consider, for
d = 1 and Ω = [−π, π), the class C of real-valued even functions in
C = L2(Ω), and take the dictionary asD = {cos(ix), i ∈ N0}. As the
index i enumerating the dictionary elements corresponds to frequen-
cies, the basis functions in D are hence ordered according to increasing
frequencies. Next, note that the parameter a in Theorem 2 corresponds
to the frequency index i in our example. As the network Ψa,D,ε in
Theorem 2 is of finite width, it hence follows, upon replacing a in the
expression for L(Ψa,D,ε) by i, thatM(Ψi,D,ε) ≤ π(log(ε−1), log(i)).
The condition on the weights for effective representability is satisfied
trivially, simply as B(Ψi,D,ε) ≤ 1 ≤ π(ε−1, i).

We are now ready to state the rate optimality transfer result.
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Theorem 5. Let d ∈ N, Ω ⊆ Rd be bounded, and consider the compact
function class C ⊆ L2(Ω). Suppose that the dictionaryD = (ϕi)i∈N ⊆
L2(Ω) is effectively representable by neural networks. Then, for every
γ ∈ (0, γ∗,eff(C,D)), there exist a polynomial π and a map

Ψ :
(
0, 1

2
)
× C → Nd,1,

such that for all f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f) has
(dπ(log(ε−1))e, ε)-quantized weights while satisfying

‖f −Ψ(ε, f)‖L2(Ω) ≤ ε,

L(Ψ(ε, f)) ≤ π(log(ε−1)),
B(Ψ(ε, f)) ≤ π(ε−1),

and we have
M(Ψ(ε, f)) ∈ O(ε−1/γ), ε→ 0, (1.41)

with the implicit constant in (1.41) being independent of f . In particular,
it holds that

γ∗,eff
N (C) ≥ γ∗,eff(C,D).

Remark 5. Theorem 5 allows us to draw the following conclusion. IfD
optimally represents the function class C in the sense of Definition 7, i.e.,
γ∗,eff(C,D) = γ∗(C), and if it is, in addition, effectively representable
by neural networks in the sense of Definition 13, then, due to Theorem
4, which states that γ∗,eff

N (C) ≤ γ∗(C), we have γ∗,eff
N (C) = γ∗(C) and

hence C is optimally representable by neural networks in the sense of
Definition 11.

Proof of Theorem 5. Let γ′ ∈ (γ, γ∗,eff(C,D)). According to Defini-
tion 6, there exist a constant C ≥ 1 and a polynomial π1, such that for
every f ∈ C, M ∈ N, there is an index set If,M ⊆ {1, . . . , π1(M)}
of cardinality M and coefficients (ci)i∈If,M with |ci| ≤ π1(M), such
that ∥∥∥∥∥∥f −

∑
i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

≤ CM−γ
′

2 . (1.42)
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Let A := max{1, |Ω|1/2}. Effective representability of D according to
Definition 13 ensures the existence of a bivariate polynomial π2 such
that for all M ∈ N, i ∈ If,M , there is a neural network Φi,M ∈ Nd,1
satisfying

‖ϕi − Φi,M‖L2(Ω) ≤ C
4Aπ1(M)M

−(γ′+1) (1.43)

with

M(Φi,M ) ≤ π2

(
log
((

C
4Aπ1(M)M

−(γ′+1)
)−1

)
, log(i)

)
= π2

(
(γ′ + 1) log(M) + log

(
4Aπ1(M)

C

)
, log(i)

)
,

B(Φi,M ) ≤ π2

((
C

4Aπ1(M)M
−(γ′+1)

)−1
, i

)
= π2

(
4Aπ1(M)

C Mγ′+1, i
)
.

(1.44)

Consider now for f ∈ C, M ∈ N the networks given by

Ψf,M (x) :=
∑

i∈If,M

ciΦi,M (x).

Due to max(If,M ) ≤ π1(M), (1.44) and Lemma 19 imply the
existence of a polynomial π3 such that L(Ψf,M ) ≤ π3(log(M)),
M(Ψf,M ) ≤ Mπ3(log(M)), and B(Ψf,M ) ≤ π3(M), for all f ∈ C,
M ∈ N, and, owing to (1.43), we get∥∥∥∥∥∥Ψf,M −

∑
i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

≤
∑

i∈If,M

|ci| C
4Aπ1(M)M

−(γ′+1)

≤ CM−γ
′

4A

|If,M |∑
i=1

maxi∈If,M |ci|
Mπ1(M) ≤ CM−γ

′

4A .

(1.45)
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Lemma 9 therefore ensures the existence of a polynomial π4
such that for all f ∈ C, M ∈ N, there is a network Ψ̃f,M ∈
Nd,1 with (dπ4(log( 4A

C M
γ′))e, CM−γ

′

4A )-quantized weights satisfy-
ing L(Ψ̃f,M ) = L(Ψf,M ), M(Ψ̃f,M ) = M(Ψf,M ), B(Ψ̃f,M ) ≤
B(Ψf,M ) + CM−γ

′

4A , and∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L∞(Ω)

≤ CM−γ
′

4A . (1.46)

As Ω is bounded by assumption, we have∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L2(Ω)

≤ |Ω| 12
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L∞(Ω)

≤ CM−γ
′

4 ,

(1.47)

for all f ∈ C, M ∈ N. Combining (1.47) with (1.42) and (1.45), we
get, for all f ∈ C, M ∈ N,∥∥∥f − Ψ̃f,M

∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥f −
∑

i∈If,M

ciϕi

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
∑

i∈If,M

ciϕi −Ψf,M

∥∥∥∥∥∥
L2(Ω)

+
∥∥∥Ψf,M − Ψ̃f,M

∥∥∥
L2(Ω)

≤ CM−γ′ .

(1.48)

For ε ∈ (0, 1/2) and f ∈ C, we now set Mε :=
⌈
(C/ε)1/γ′

⌉
and

Ψ(ε, f) := Ψ̃f,Mε
.

Thus, (1.48) yields

‖f −Ψ(ε, f)‖L2(Ω) ≤ CM−γ
′

ε ≤ ε.

Next, we note that, for all polynomials π and 0 ≤ m < n,

O(ε−mπ(log(ε−1))) ⊆ O(ε−n), ε→ 0.

69



As 1/γ′ < 1/γ, this establishes

M(Ψ(ε, f)) ∈ O(Mεπ3(log(Mε))) ⊆ O(ε−1/γ), ε→ 0. (1.49)

Since Mε and π3 are independent of f , the implicit constant in (1.49)
does not depend on f .

Next, note that, in general, an (n, η)-quantized network is also
(m, δ)-quantized for n ≥ m and η ≤ δ, simply as

2−mdlog(δ−1)eZ ∩ [−δ−m, δ−m] ⊆ 2−ndlog(η−1)eZ ∩ [−η−n, η−n].

Since CM−γ
′

ε

4A ≤ ε this ensures the existence of a polynomial π
such that, for every f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f)
is (dπ(log(ε−1))e, ε)-quantized, L(Ψ(ε, f)) ≤ π(log(ε−1)), and
B(Ψ(ε, f)) ≤ π(ε−1). With (1.49) this establishes the first claim of
the theorem. In order to verify the second claim, note that Ψ(ε, f) ∈
N π
M(Ψ(ε,f)),d,1, for all f ∈ C, ε ∈ (0, 1/2), which implies

sup
f∈C

inf
Φ∈Nπ

M,d,1

‖f − Φ‖L2(Ω) ∈ O(M−γ), M →∞.

Therefore, owing to Definition 10, we get

γ∗,eff
N (C) ≥ γ∗,eff(C,D),

which concludes the proof.

Remark 6. We note that Theorem 5 continues to hold for Ω = Rn if
the elements of D = (ϕi)i∈N are compactly supported with the size
of their support sets growing no more than polynomially in i. The
technical elements required to show this can be found in the context of
the approximation of Gabor dictionaries in the proof of Theorem 10,
but are omitted here for ease of exposition.

The last piece needed to complete our program is to establish that the
conditions in Definition 13 guaranteeing effective representability in
neural networks are, indeed, satisfied by a wide variety of dictionaries.
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Inspecting Table 1, we can see that all example function classes
provided therein are optimally represented either by affine dictionar-
ies, i.e., wavelets, the Haar basis, and curvelets or Weyl-Heisenberg
dictionaries, namely Fourier bases and Wilson bases. The next two
sections will be devoted to proving effective representability of affine
dictionaries and Weyl-Heisenberg dictionaries by neural networks, thus
allowing us to draw the conclusion that neural networks are universally
Kolmogorov-Donoho optimal approximators for all function classes
listed in Table 1.

1.8. AFFINE DICTIONARIES ARE
EFFECTIVELY REPRESENTABLE BY
NEURAL NETWORKS

The purpose of this section is to establish that affine dictionaries, includ-
ing wavelets (Daubechies, 1992), ridgelets (Candès, 1998), curvelets
(Candès and Donoho, 2002), shearlets (Guo et al., 2006), α-shearlets
and more generally α-molecules (Grohs et al., 2016a), which contain
all aforementioned dictionaries as special cases, are effectively repre-
sentable by neural networks. Due to Theorem 5 and Theorem 4, this
will then allow us to conclude that any function class that is optimally
representable—in the sense of Definition 7—by an affine dictionary
with a suitable generator function is optimally representable by neural
networks in the sense of Definition 11. By “suitable” we mean that the
generator function can be approximated well by ReLU networks in a
sense to be made precise below.

In order to elucidate the main ideas underlying the general defini-
tion of affine dictionaries that are effectively representable by neural
networks, we start with a basic example, namely the Haar wavelet
dictionary on the unit interval, i.e., the set of functions

ψn,k : [0, 1] 7→ R, x 7→ 2n2 ψ(2nx− k), n ∈ N0, k = 0, . . . , 2n − 1,
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with

ψ : R→ R, x 7→


1, x ∈ [0, 1/2)
−1, x ∈ [1/2, 1)
0, else.

We approximate the piecewise constant mother wavelet ψ through a
continuous piecewise linear function realized by a neural network as
follows

Ψδ(x) : = 1
2δρ(x+ δ)− 1

2δρ(x− δ)− 1
δρ(x− ( 1

2 − δ))
+ 1

δρ(x− ( 1
2 + δ)) + 1

2δρ(x− (1− δ))− 1
2δρ(x− (1 + δ))

and, setting δ(ε) := ε2 for ε ∈ (0, 1/2), let

Φn,k,ε(x) := 2n2 Ψδ(ε)(2nx− k), n ∈ N0, k = 0, . . . , 2n − 1.

The basic idea in the approximation of ψ through Ψδ is to let the transi-
tion regions around 0, 1/2, and 1 shrink, as a function of ε, sufficiently
fast for the construction to realize an approximation error of no more
than ε. Now, a direct calculation yields that, indeed, for ε ∈ (0, 1/2),

‖ψn,k − Φn,k,ε‖L2([0,1]) ≤ ε.

Moreover, we have M(Φn,k,ε) = 18 and B(Φn,k,ε) ≤
max{2n2 ε−2, 2n}. In order to establish effective representability by
neural networks, we need to order the Haar wavelet dictionary suitably.
Specifically, we proceed from coarse to fine scales, i.e., we let

(ϕi)i∈N = D = {D0,D1, . . . },

with Dn := {ψn,k 7→ R : k = 0, . . . , 2n − 1}, where the ordering
within the Dn may be chosen arbitrarily. Next, note that for every pair
n ∈ N0, k ∈ {0, . . . , 2n − 1}, there exists a unique index i ∈ N such
that ϕi = ψn,k = ψn(i),k(i) and, owing to |Dn| = 2n, we have 2n(i) ≤
i. Finally, taking Φi,ε := Φn(i),k(i),ε and π(a, b) := a2b + b + 18,
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the conditions in Definition 13 for effective representability by neural
networks are readily verified. A more elaborate example, namely spline
wavelets, is considered at the end of this section.

We are now ready to proceed to the general definition of affine
dictionaries with canonical ordering.

A. Affine Dictionaries with Canonical Ordering

Definition 14. Let d, S ∈ N, δ > 0, Ω ⊆ Rd be bounded, and let
gs ∈ L∞(Rd), s ∈ {1, . . . , S}, be compactly supported. Furthermore,
for s ∈ {1, . . . , S}, let Js ⊆ N and As,j ∈ Rd×d, j ∈ Js, be full-rank
and with eigenvalues bounded below by 1 in absolute value. We define
the affine dictionary D ⊆ L2(Ω) with generator functions (gs)Ss=1 as

D :=
{
gj,es :=

(
|det(As,j)|

1
2 gs(As,j · − δe)

) ∣∣
Ω : s ∈ {1, . . . , S},

e ∈ Zd, j ∈ Js, and gj,es 6= 0
}
.

Moreover, we define the sub-dictionaries

Ds,j := {gj,es ∈ D : e ∈ Zd and gj,es 6= 0},
for j ∈ Js, s ∈ {1, . . . , S}

Dj :=
⋃

s∈{1,...,S} : j∈Js

Ds,j , for j ∈ N.

We call an affine dictionary canonically ordered if it is arranged
according to

(ϕi)i∈N = D = (D1,D2, . . . ) , (1.50)

where the elements within each Dj may be ordered arbitrarily, and
there exist constants a, c > 0 such that

j−1∑
k=1
|det(As,k)| ≥ c‖As,j‖a∞, for all j ∈ Js\{1}, s ∈ {1, . . . , S}.

(1.51)
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We call an affine dictionary nondegenerate if for every j ∈ Js, s ∈
{1, . . . , S}, the sub-dictionary Ds,j contains at least one element.

Note that for sake of greater generality, we associate possibly dif-
ferent sets Js ⊆ N with the generator functions gs and, in particular,
also allow these sets to be finite. The Haar wavelet dictionary example
above is recovered as a nondegenerate affine dictionary by taking d = 1,
Ω = [0, 1], S = 1, Js = N, g1 = ψ, δ = 1, A1,j = 2j−1, a = 1,
c = 1/2, and noting that nondegeneracy is verified as for scale j, the
sub-dictionary Ds,j contains 2j−1 elements. Moreover, the weights
of the networks approximating the individual Haar wavelet dictionary
elements grow linearly in the index of the dictionary elements. This is
a consequence of the weights being determined by the dilation factor
2n and 2n(i) ≤ i due to the ordering we chose. As will be shown below,
morally this continues to hold for general nondegenerate affine dic-
tionaries, thereby revealing what informed our definition of canonical
ordering. Besides, our notion of canonical ordering is also inspired by
the ordering employed in the tail compactness considerations for Besov
spaces and orthonormal wavelet dictionaries as detailed in Appendix
B. We remark that (1.51) constitutes a very weak restriction on how
fast the size of dilations may grow; in fact, we are not aware of any
affine dictionaries in the literature that would violate this condition.
Finally, we note that the dilations As,j are not required to be ordered in
ascending size, as was the case in the Haar wavelet dictionary example.
Canonical ordering does, however, ensure a modicum of ordering.

B. Invariance to Affine Transformations

Affine dictionaries consist of dilations and translations of a given gen-
erator function. It is therefore important to understand the impact of
these operations on the approximability—by neural networks—of a
given function. As neural networks realize concatenations of affine
functions and nonlinearities, it is clear that translations and dilations
can be absorbed into the first layer of the network and the transformed
function should inherit the approximability properties of the generator
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function. However, what we will have to understand is how the weights,
the connectivity, and the domain of approximation of the resulting
network are impacted. The following result makes this quantitative.

Proposition 5. Let d ∈ N, p ∈ [1,∞], and f ∈ Lp(Rd). Assume
that there exists a bivariate polynomial π such that for all D ∈ R+,
ε ∈ (0, 1/2), there is a network ΦD,ε ∈ Nd,1 satisfying

‖f − ΦD,ε‖Lp([−D,D]d) ≤ ε, (1.52)

withM(ΦD,ε) ≤ π(log(ε−1), log(dDe)). Then, for all full-rank ma-
trices A ∈ Rd×d, and all e ∈ Rd, E ∈ R+, and η ∈ (0, 1/2), there is
a network ΨA,e,E,η ∈ Nd,1 satisfying∥∥∥|det(A)| 1p f(A · − e)−ΨA,e,E,η

∥∥∥
Lp([−E,E]d)

≤ η,

with M(ΨA,e,E,η) ≤ π′(log(η−1), log(dF e)) and B(ΨA,e,E,η) ≤
max{B(ΦF,η), |det(A)| 1p , ‖A‖∞, ‖e‖∞}, where F = dE‖A‖∞ +
‖e‖∞ and π′ is of the same degree as π.

Proof. By a change of variables, we have for every Φ ∈ Nd,1,∥∥|det(A)| 1p f(A · − e)− |det(A)| 1pΦ(A · − e)
∥∥
Lp([−E,E]d) (1.53)

= ‖f − Φ‖Lp(A·[−E,E]d− e). (1.54)

Furthermore, observe that

A · [−E,E]d − e ⊆ [−(dE‖A‖∞ + ‖e‖∞), (dE‖A‖∞ + ‖e‖∞)]d

= [−F, F ]d.
(1.55)

Next, we consider the affine transformations WA,e(x) := Ax − e,
W ′A(x) := |det(A)| 1px as depth-1 networks and take ΨA,e,E,η :=
W ′A ◦ ΦF,η ◦ WA,e according to Lemma 1. Combining (1.53) and
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(1.55) yields∥∥|det(A)| 1p f(A · − e)−ΨA,e,E,η

∥∥
Lp([−E,E]d)

= ‖f − ΦF,η‖Lp(A·[−E,E]d− e)

≤ ‖f − ΦF,η‖Lp([−F,F ]d) ≤ η.

The desired bounds onM(ΨA,e,E,η) and B(ΨA,e,E,η) follow directly
by construction.

C. Canonically Ordered Affine Dictionaries are
Effectively Representable

The next result establishes that canonically ordered affine dictionaries
with generator functions that can be approximated well by neural
networks are effectively representable by neural networks.

Theorem 6. Let d, S ∈ N, Ω ⊆ Rd be bounded with nonempty interior,
(gs)Ss=1 ∈ L∞(Rd) compactly supported, and D = (ϕi)i∈N ⊆ L2(Ω)
a nondegenerate canonically ordered affine dictionary with generator
functions (gs)Ss=1. Assume that there exists a polynomial π such that,
for all s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there is a network Φs,ε ∈ Nd,1
satisfying

‖gs − Φs,ε‖L2(Rd) ≤ ε, (1.56)

with M(Φs,ε) ≤ π(log(ε−1)) and B(Φs,ε) ≤ π(ε−1). Then, D is
effectively representable by neural networks.

Proof. By Definition 13 we need to establish the existence of a bivariate
polynomial π such that for each i ∈ N, η ∈ (0, 1/2), there is a network
Φi,η ∈ Nd,1 satisfying

‖ϕi − Φi,η‖L2(Ω) ≤ η, (1.57)

withM(Φi,η) ≤ π(log(η−1), log(i)) and B(Φi,η) ≤ π(η−1, i). Note
that we have

ϕi = gji,eisi =
(
|det(Asi,ji)|

1
2 gsi(Asi,ji · − δei)

) ∣∣
Ω,
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for si ∈ {1, . . . , S}, ji ∈ Jsi , and ei ∈ Zd. In order to devise networks
satisfying (1.57), we employ Proposition 5, upon noting that, by virtue
of (1.56), the networks Φs,ε satisfy (1.52) with p = 2, f = gs, for
every D ∈ R+. Consequently Proposition 5 yields a connectivity
bound that is even slightly stronger than needed, as it is independent of
i. It remains to ensure that the desired bound on B(Φi,η) holds. This
is the case for ‖Asi,ji‖∞ and ‖ei‖∞ both bounded polynomially in i.
In order to verify this, we first bound ‖ei‖∞ relative to ‖Asi,ji‖∞. As
the generators (gs)Ss=1 are compactly supported by assumption, there
exists E ∈ R+ such that, for every s ∈ {1, . . . , S}, the support of gs
is contained in [−E,E]d. We thus get, for all s ∈ {1, . . . , S}, j ∈ Js,
and e ∈ Zd, that

‖δe‖∞ ≥ sup
x∈Ω
‖As,jx‖∞ + E

=⇒ gj,es (x) = 0, ∀x ∈ Ω =⇒ gj,es /∈ Dj .

Since Ω is bounded by assumption, there hence exists a constant c =
c(Ω, (gs)Ss=1, δ, d) such that, for all s ∈ {1, . . . , S}, j ∈ Js, and e ∈
Zd, we have

gj,es ∈ Dj =⇒ ‖e‖∞ ≤ c‖As,j‖∞.

It remains to show that ‖Asi,ji‖∞ is polynomially bounded in i. We
start by claiming that, for every s ∈ {1, . . . , S}, there is a constant
cs := cs(Ω, δ, d) > 0 such that

|det(As,j)| ≤ cs|Ds,j |, for all j ∈ Js. (1.58)

To verify this claim, first note that |Ds,j | ≥ 1, for all s ∈
{1, . . . , S}, j ∈ Js, owing to the nondegeneracy condition. Thus, for
every s ∈ {1, . . . , S}, j ∈ Js, there exist x0 ∈ Ω and e0 ∈ Zd such
that gj,e0

s (x0) 6= 0, which implies

gj,es (x0 +A−1
s,jδ(e− e0)) = |det(As,j)|

1
2 gs(As,jx0 − δe0)

= gj,e0
s (x0) 6= 0.
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We can therefore conclude that x0 + A−1
s,jδ(e − e0) ∈ Ω implies

gj,es ∈ Ds,j . Consequently, we have

|Ds,j | ≥ |{e ∈ Zd : x0 +A−1
s,jδ(e− e0) ∈ Ω}|

= |{e ∈ Zd : A−1
s,jδe ∈ Ω− x0}|

= |Zd ∩ 1
δAs,j(Ω− x0)|.

As Ω was assumed to have nonempty interior, there exists a constant
C = C(Ω) such that

|Zd ∩ 1
δAs,j(Ω− x0)| ≥ C vol

( 1
δAs,j(Ω− x0)

)
= C δ−d|det(As,j)| vol(Ω).

We have hence established the claim (1.58). Combining (1.51) and
(1.58), we obtain, for all si ∈ {1, . . . , S}, j ∈ Js\{1},

c‖Asi,ji‖a∞ ≤
ji−1∑
k=1
|det(Asi,k)| ≤ csi

ji−1∑
k=1
|Dk,si | ≤ csi,

where the last inequality follows from the fact that ϕi ∈ Dji,si and
hence its index i must be larger than the number of elements contained
in preceding sub-dictionaries. This ensures that

‖Asi,ji‖∞ ≤
(

1
c

max
s=1,...,S

cs

) 1
a

i
1
a + max

s=1,...,S
‖As,1‖∞, for all i ∈ N,

thereby completing the proof.

Remark 7. Theorem 6 is restricted, for ease of exposition, to bounded
Ω and compactly supported generator functions gs. The result can
be extended to Ω = Rd and to generator functions gs of unbounded
support but sufficiently fast decay. This extension requires additional
technical steps and an alternative definition of canonical ordering. For
conciseness we do not provide the details here, but instead refer to
the proofs of Theorems 10 and 12, which deal with the corresponding
technical aspects in the context of approximation of Gabor dictionaries
by neural networks.
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We can now put the results together to conclude a remarkable univer-
sality and optimality property of neural networks: Consider an affine
dictionary generated by functions gs that can be approximated well
by neural networks. If this dictionary provides Kolmogorov-Donoho-
optimal approximation for a given function class, then so do neural
networks.

Theorem 7. Let d, S ∈ N, Ω ⊆ Rd be bounded with nonempty interior,
(gs)Ss=1 ∈ L∞(Rd) compactly supported, and D = (ϕi)i∈N ⊆ L2(Ω)
a nondegenerate canonically ordered affine dictionary with generator
functions (gs)Ss=1. Assume that there exists a polynomial π such that,
for all s ∈ {1, . . . , S}, ε ∈ (0, 1/2), there is a network Φs,ε ∈ Nd,1
satisfying ‖gs − Φs,ε‖L2(Rd) ≤ ε withM(Φs,ε) ≤ π(log(ε−1)) and
B(Φs,ε) ≤ π(ε−1). Then, we have

γ∗,eff
N (C) ≥ γ∗,eff(C,D)

for all compact function classes C ⊆ L2(Ω). In particular, if C is
optimally representable by D (in the sense of Definition 7), then C is
optimally representable by neural networks (in the sense of Definition
11).

Proof. The first statement follows from Theorem 5 and Theorem 6, the
second from Theorem 4.

D. Spline wavelets

We next particularize the results developed above to show that neural
networks Kolmogorov-Donoho optimally represent all function classes
C that are optimally representable by spline wavelet dictionaries. As
spline wavelet dictionaries have B-splines as generator functions, we
start by showing how B-splines can be realized through neural networks.
For simplicity of exposition, we restrict ourselves to the univariate case
throughout.
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Definition 15. Let N1 := χ[0,1] and for m ∈ N, define

Nm+1 := N1 ∗Nm,

where ∗ stands for convolution. We refer to Nm as the univariate
cardinal B-spline of order m.

Recognizing that B-splines are piecewise polynomial, we can build
on Proposition 3 to get the following statement on the approximation
of B-splines by deep neural networks.

Lemma 10. Let m ∈ N. There exists a constant C > 0 such that for
all ε ∈ (0, 1/2), there is a neural network Φε ∈ N1,1 satisfying

‖Φε −Nm‖L∞(R) ≤ ε,

withM(Φε) ≤ C log(ε−1) and B(Φε) ≤ 1.

Proof. The proof is based on the following representation (Unser, 1997,
Eq. 19)

Nm(x) = 1
m!

m+1∑
k=0

(−1)k
(
m+ 1
k

)
ρ((x− k)m). (1.59)

While Nm is supported on [0,m], the networks Φε can have support
outside [0,m] as well. We only need to ensure that Φε is “close” to Nm
on [0,m] and at the same time “small” outside the interval [0,m]. To
accomplish this, we first approximate Nm on the slightly larger domain
[−1,m + 1] by a linear combination of networks realizing shifted
monomials according to (1.59), and then multiply the resulting network
by another one that takes on the value 1 on [0,m] and 0 outside of
[−1,m+ 1]. Specifically, we proceed as follows. Proposition 3 ensures
the existence of a constant C1 such that for all ε ∈ (0, 1/2), there is a
network Ψm+2,ε ∈ N1,1 satisfying

‖Ψm+2,ε(x)− xm‖L∞([−(m+2),m+2]) ≤ ε
4(m+2) ,
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with M(Ψm+2,ε) ≤ C1 log(ε−1) and B(Ψm+2,ε) ≤ 1. Note that
we did not make the dependence of M(Ψm+2,ε) on m explicit as
we consider m to be fixed. Next, let Tk(x) := x − k and observe
that ρ((x − k)m) can be realized as a neural network according to
ρ ◦Ψm+2,ε ◦ Tk, where Tk is taken pursuant to Corollary 2. Next, we
define, for ε ∈ (0, 1/2), the network

Φ̃ε := 1
m!

m+1∑
k=0

(−1)k
(
m+ 1
k

)
ρ ◦Ψm+2,ε ◦ Tk

and note that

1
m!

(
m+ 1
k

)
= m+ 1
k!(m− k + 1)! ≤ 2,

for k = 0, . . . ,m+1. As ρ is 1-Lipschitz, we have, for all ε ∈ (0, 1/2),

‖Φ̃ε −Nm‖L∞([−1,m+1])

≤
m+1∑
k=0

1
m!

(
m+ 1
k

)
‖ρ ◦Ψm+2,ε ◦ Tk − ρ ◦ Tmk ‖L∞([−1,m+1])

≤ 2
m+1∑
k=0
‖Ψm+2,ε(x)− xm‖L∞([−(m+2),m+2]) ≤ ε

2 .

(1.60)

Let now Γ(x) := ρ(x+1)−ρ(x)−ρ(x−m)+ρ(x−(m+1)), note that
0 ≤ Γ(x) ≤ 1, and take Φmult

1+ε/2,ε/2 to be the multiplication network

from Lemma 2. We define Φε := Φmult
1+ε/2,ε/2 ◦ (Φ̃ε,Γ) according to

Lemma 1 and Lemma 18 and note that

‖Φε −Nm‖L∞(R)

≤ ‖Φmult
1+ε/2,ε/2 ◦ (Φ̃ε,Γ)− Φ̃ε · Γ‖L∞([−1,m+1])

+ ‖Φ̃ε · Γ−Nm‖L∞([−1,m+1])

(1.61)

as both Nm and Γ vanish outside [−1,m+ 1] and Φmult
1+ε/2,ε/2 delivers

zero whenever at least one of its inputs is zero. Note that the first
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term on the right-hand-side of (1.61) is upper-bounded by ε
2 as a

consequence of Nm(x) ≤ 1 and hence Φ̃ε(x) ≤ 1 + ε
2 , for x ∈

[−1,m + 1], owing to (1.60). For the second term, we split up the
interval [−1,m+1] and first note that, for x ∈ [0,m], Γ(x) = 1, which
implies ‖Φ̃ε ·Γ−Nm‖L∞([0,m]) = ‖Φ̃ε−Nm‖L∞([0,m]) ≤ ε/2, again
owing to (1.60). For x ∈ [−1,m + 1] \ [0,m], we have Nm(x) = 0
and Γ(x) ≤ 1, which yields

|Φ̃ε(x) · Γ(x)−Nm(x)| ≤ |Φ̃ε(x)|
≤ |Φ̃ε(x)−Nm(x)|+ |Nm(x)|
= |Φ̃ε(x)−Nm(x)|
≤ ε/2,

again by (1.60). In summary, (1.60) hence ensures that the second term
in (1.61) is also upper-bounded by ε

2 and therefore ‖Φε−Nm‖L∞(R) ≤
ε. Combining Lemma 1, Proposition 2, Corollary 2, Lemma 15, and
Lemma 18 establishes the desired bounds onM(ΦD,ε) and B(ΦD,ε).

Remark 8. As both Nm and the approximating networks Φε we con-
structed in the proof of Lemma 10 are supported in [−1,m + 1], we
have ‖Φε −Nm‖L2(R) ≤ (m+ 2)1/2‖Φε −Nm‖L∞(R), which shows
that Lemma 10 continues to hold when the approximation error is
measured in L2(R)-norm, albeit with a different constant C.

We are now ready to introduce spline wavelet dictionaries. For n, j ∈
Z, set

Vn := closL2

(
span {Nm(2nx− k) : k ∈ Z}

)
,

where closL2 denotes closure with respect to L2-norm. Spline spaces
Vn, n ∈ Z, constitute a multiresolution analysis (Mallat, 1989) of
L2(R) according to

{0} ⊆ . . . V−1 ⊆ V0 ⊆ V1 ⊆ · · · ⊆ L2(R).
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Moreover, with the orthogonal complements (. . . ,W−1,W0,W1, . . . )
such that Vn+1 = Vn ⊕Wn, where ⊕ denotes the orthogonal sum, we
have

L2(R) = V0 ⊕
∞⊕
k=0

Wk.

Theorem 8 ((Chui and Wang, 1992, Theorem 1)). Let m ∈ N. The
m-th order spline

ψm(x) = 1
2m−1

2m−2∑
j=0

(−1)jN2m(j + 1) d
m

dxm
N2m(2x− j), (1.62)

with support [0, 2m − 1], is a basic wavelet that generates W0 and
thereby all the spaces Wn, n ∈ Z. Consequently, the set

Wm : = {ψk,n(x) = 2n/2ψm(2nx− k) : n ∈ N0, k ∈ Z}
∪ {φk(x) = Nm(x− k) : k ∈ Z}

(1.63)

is a countable complete orthonormal wavelet basis in L2(R).

Taking Ω ⊆ R, S = 2, J1 = N, J2 = {1}, A1,j = 2j−1 for j ∈ N,
and A2,1 = 1, we get that

D :=
{
gj,es (x) :=

(
|Aj |

1
2 gs(Aj · − δe)

)∣∣∣
Ω

: s ∈ {1, 2},

e ∈ Z, j ∈ Js, and gj,es 6= 0
}

=Wm

(1.64)

is a nondegenerate canonically ordered affine dictionary with generators
g1 = ψm and g2 = Nm. The canonical ordering condition (1.51) is
satisfied with a = 1 and c = 1/2. Nondegeneracy follows upon noting
that supp(ψk,n) = [2−nk, 2−n(2m−1+k)] and supp(Nm( · −k)) =
[k,m+ k], which implies that all sub-dictionaries contain at least one
element as required.

We have therefore established the following.

Theorem 9. Let Ω ⊆ R be bounded and of nonempty interior and
D = (ϕi)i∈N ⊆ L2(Ω) a spline wavelet dictionary according to (1.64)
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ordered per (1.50). Then, all compact function classes C ⊆ L2(Ω) that
are optimally representable by D (in the sense of Definition 7) are
optimally representable by neural networks (in the sense of Definition
11).

Proof. As the canonical ordering and the nondegeneracy conditions
were already verified, it remains to establish that the generators ψm and
Nm satisfy the antecedent of Theorem 6. To this end, we first devise
an alternative representation of (1.62). Specifically, using the identity
(Chui and Wang, 1992, Eq. 2.2)

dm

dxm
N2m(x) =

m∑
j=0

(−1)j
(
m

j

)
Nm(x− j),

we get

ψm(x) =
3m−1∑
n=1

qnNm(2x− n+ 1), (1.65)

with

qn = (−1)n+1

2m−1

m∑
j=0

(
m

j

)
N2m(n− j).

As (1.65) shows that ψm is a linear combination of shifts and dilations
of Nm, combining Lemma 10 and Remark 8 with Lemma 4 and Propo-
sition 5 ensures that (1.56) is satisfied. Application of Theorem 7 then
establishes the claim.

1.9. WEYL-HEISENBERG DICTIONARIES

In this section, we consider Weyl-Heisenberg a.k.a. Gabor dictionaries
(Gröchenig, 2013), which consist of time-frequency translates of a
given generator function. Gabor dictionaries play a fundamental role in
time-frequency analysis (Gröchenig, 2013) and in the study of partial
differential equations (Fefferman, 1983). We start with the formal
definition of Gabor dictionaries.
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Definition 16 (Gabor dictionaries). Let d ∈ N, f ∈ L2(Rd), and
x, ξ ∈ Rd. We define the translation operator Tx : L2(Rd)→ L2(Rd)
as

Txf(t) := f(t− x)

and the modulation operator Mξ : L2(Rd)→ L2(Rd,C) as

Mξf(t) := e2πi〈ξ,t〉f(t).

Let Ω ⊆ Rd, α, β > 0, and g ∈ L2(Rd). The Gabor dictionary
G(g, α, β,Ω) ⊆ L2(Ω) is defined as

G(g, α, β,Ω) :=
{
MξTxg

∣∣
Ω : (x, ξ) ∈ αZd × βZd

}
.

In order to describe representability in neural networks in the sense
of Definition 13, we need to order the elements in G(g, α, β,Ω). To
this end, let G0(g, α, β,Ω) := {g

∣∣
Ω} and define Gn(g, α, β,Ω), n ∈ N,

recursively according to

Gn(g, α, β,Ω) := {MξTxg
∣∣
Ω : (x, ξ) ∈ αZd × βZd, ‖x‖∞ ≤ nα,

‖ξ‖∞ ≤ nβ}\
n−1⋃
k=0
Gk(g, α, β,Ω).

We then organize G(g, α, β,Ω) as

G(g, α, β,Ω) = (G0(g, α, β,Ω), G1(g, α, β,Ω), . . . ), (1.66)

where the ordering within the sets Gn(g, α, β,Ω) is arbitrary. We hasten
to add that the specifics of the overall ordering in (1.66) are irrelevant
as long as G(g, α, β,Ω) = (ϕi)i∈N with ϕi =Mξ(i)Tx(i)g

∣∣
Ω is such

that ‖x(i)‖∞ and ‖ξ(i)‖∞ do not grow faster than polynomially in i;
this will become apparent in the proof of Theorem 10. We note that
this ordering is also inspired by that employed in the tail compactness
considerations for modulation spaces and Wilson bases as detailed in
Appendix C.
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As Gabor dictionaries are built from time-shifted and modulated
versions of the generator function g, and invariance to time-shifts was
already established in Proposition 5, we proceed to showing that the
approximation-theoretic properties of the generator function are in-
herited by its modulated versions. This result can be interpreted as an
invariance property to frequency shifts akin to that established in Propo-
sition 5 for affine transformations in the context of affine dictionaries.
In summary, neural networks exhibit a remarkable invariance property
both to the affine group operations of scaling and translation and to the
Weyl-Heisenberg group operations of modulation and translation.

Lemma 11. Let d ∈ N, f ∈ L2(Rd)∩L∞(Rd), and for everyD ∈ R+,
ε ∈ (0, 1/2), let ΦD,ε ∈ Nd,1 satisfy

‖f − ΦD,ε‖L∞([−D,D]d) ≤ ε.

Then, there exists a constant C > 0 (which does not depend on f )
such that for all D ∈ R+, ε ∈ (0, 1/2), ξ ∈ Rd, there are networks
ΦRe
D,ξ,ε,ΦIm

D,ξ,ε ∈ Nd,1 satisfying

‖Re(Mξf)− ΦRe
D,ξ,ε‖L∞([−D,D]d)

+ ‖Im(Mξf)− ΦIm
D,ξ,ε‖L∞([−D,D]d)

≤ 3ε

with

L(ΦRe
D,ξ,ε),L(ΦIm

D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e)
+(log(dSfe))2) + L(ΦD,ε),

M(ΦRe
D,ξ,ε),M(ΦIm

D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e)
+(log(dSfe))2 + d) + 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε) ≤ 1, where Sf := max{1, ‖f‖L∞(Rd)}.

Proof. All statements in the proof involving ε pertain to ε ∈ (0, 1/2)
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without explicitly stating this every time. We start by observing that

Re(Mξf)(t) = cos(2π〈ξ, t〉)f(t)
Im(Mξf)(t) = sin(2π〈ξ, t〉)f(t)

due to f ∈ R. Note that for given ξ ∈ Rd, the map t 7→ 〈ξ, t〉 = ξT t =
t1ξ1 + · · ·+ tdξd is simply a linear transformation. Hence, combining
Lemma 1, Theorem 2, and Corollary 2 establishes the existence of a
constant C1 such that for all D ∈ R+, ξ ∈ Rd, ε ∈ (0, 1/2), there is a
network ΨD,ξ,ε ∈ Nd,1 satisfying

sup
t∈[−D,D]d

| cos(2π〈ξ, t〉)−ΨD,ξ,ε(t)| ≤ ε
6Sf (1.67)

with

L(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2

+ log(ddD‖ξ‖∞e)),
M(ΨD,ξ,ε) ≤ C1((log(ε−1))2 + (log(Sf ))2

+ log(ddD‖ξ‖∞e) + d),

(1.68)

and B(ΨD,ξ,ε) ≤ 1. Moreover, Proposition 2 guarantees the existence
of a constant C2 > 0 such that for all ε ∈ (0, 1/2), there is a network
µε ∈ N2,1 satisfying

sup
x,y∈[−Sf−1/2,Sf+1/2]

|µε(x, y)− xy| ≤ ε
6 (1.69)

with

L(µε),M(µε) ≤ C2(log(ε−1) + log(dSfe)) (1.70)

and B(µε) ≤ 1. Using Lemmas 2 and 3, we get that the network
ΓD,ξ,ε := (ΨD,ξ,ε,ΦD,ε) ∈ Nd,2 satisfies

L(ΓD,ξ,ε) ≤ max{L(ΨD,ξ,ε),L(ΦD,ε)},
M(ΓD,ξ,ε) ≤ 2M(ΨD,ξ,ε) + 2M(ΦD,ε)

+2L(ΨD,ξ,ε) + 2L(ΦD,ε),
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and B(ΓD,ξ,ε) ≤ 1. Finally, applying Lemma 1 to concatenate the
networks ΓD,ξ,ε and µε, we obtain the network

ΦRe
D,ξ,ε := µε ◦ ΓD,ξ,ε = µε ◦ (ΨD,ξ,ε,ΦD,ε) ∈ Nd,1

satisfying

L(ΦRe
D,ξ,ε) ≤ max{L(ΨD,ξ,ε),L(ΦD,ε)}+ L(µε), (1.71)

M(ΦRe
D,ξ,ε) ≤ 4M(ΨD,ξ,ε) + 4M(ΦD,ε) + 4L(ΨD,ξ,ε)

+4L(ΦD,ε) + 2M(µε),
(1.72)

and B(ΦRe
D,ξ,ε) ≤ 1. Next, observe that (1.67) and (1.69) imply that

‖ΦRe
D,ξ,ε − Re(Mξf)‖L∞([−D,D]d)

= ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))−ΨD,ξ,ε( · )ΦD,ε( · )‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )ΦD,ε( · )− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ‖µε(ΨD,ξ,ε( · ),ΦD,ε( · ))−ΨD,ξ,ε( · )ΦD,ε( · )‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )(ΦD,ε( · )− f( · ))‖L∞([−D,D]d)

+ ‖ΨD,ξ,ε( · )f( · )− cos(2π〈ξ, · 〉)f( · )‖L∞([−D,D]d)

≤ ε
6 + (1 + ε

6Sf )ε+ ε
6 ≤ 3

2ε.

Combining (1.68), (1.70), (1.72), and (1.71) we can further see that
there exists a constant C > 0 such that

L(ΦRe
D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e)

+(log(dSfe))2) + L(ΦD,ε),
M(ΦRe

D,ξ,ε) ≤ C((log(ε−1))2 + log(ddD‖ξ‖∞e)
+(log(dSfe))2 + d) + 4M(ΦD,ε) + 4L(ΦD,ε),

and B(ΦRe
D,ξ,ε)) ≤ 1. The results for ΦIm

D,ξ,ε follow analogously, simply
by using sin(x) = cos(x− π/2).
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Note that Gabor dictionaries necessarily contain complex-valued
functions. The theory developed so far was, however, phrased for neu-
ral networks with real-valued outputs. As is evident from the proof of
Lemma 11, this is not problematic when the generator function g is
real-valued. For complex-valued generator functions we would need a
version of Proposition 2 that applies to the multiplication of complex
numbers. Due to (a+ ib)(a′ + ib′) = (aa′ − bb′) + i(ab′ + a′b) such
a network can be constructed by realizing the real and imaginary parts
of the product as a sum of real-valued multiplication networks and
then proceeding as in the proof above. We omit the details as they are
straightforward and would not lead to new conceptual insights. Further-
more, an extension—to the complex-valued case—of the concept of
effective representability by neural networks according to Definition
13 would be needed. This can be effected by considering the set of
neural networks with 1-dimensional complex-valued output as neural
networks with 2-dimensional real-valued output, i.e., by setting

NC
d,1 := Nd,2,

with the convention that the first component represents the real part and
the second the imaginary part.

We proceed to establish conditions for effective representability of
Gabor dictionaries by neural networks.

Theorem 10. Let d ∈ N, Ω ⊆ Rd, α, β > 0, g ∈ L2(Rd) ∩ L∞(Rd),
and let G(g, α, β,Ω) be the corresponding Gabor dictionary with or-
dering as defined in (1.66). Assume that Ω is bounded or that Ω = Rd
and g is compactly supported. Further, suppose that there exists a poly-
nomial π such that for every x ∈ Rd, ε ∈ (0, 1/2), there is a network
Φx,ε ∈ Nd,1 satisfying

‖g − Φx,ε‖L∞(x+Ω) ≤ ε, (1.73)

with M(Φx,ε) ≤ π(log(ε−1), log(‖x‖∞)), B(Φx,ε) ≤
π(ε−1, ‖x‖∞). Then, G(g, α, β,Ω) is effectively representable
by neural networks.

89



Proof. We start by noting that owing to (1.66), we have
G(g, α, β,Ω) = (ϕi)i∈N with ϕi = Mξ(i)Tx(i)g ∈ Gn(i)(g, α, β,Ω),
where

‖ξ(i)‖∞ ≤ n(i)β ≤ iβ and ‖x(i)‖∞ ≤ n(i)α ≤ iα. (1.74)

Next, we take the affine transformation Wx(y) := y−x to be a depth-1
network and observe that, due to (1.73) and Lemma 1, we have, for all
x ∈ Rd, ε ∈ (0, 1/2),

‖Txg − Φ−x,ε ◦Wx‖L∞(Ω) = ‖g − Φ−x,ε‖L∞(−x+Ω) ≤ ε, (1.75)

with

M(Φ−x,ε ◦Wx) ≤ 2(π(log(ε−1), log(‖x‖∞)) + 2d)

B(M(Φ−x,ε ◦Wx)) ≤ max{B(Φ−x,ε), ‖x‖∞}
≤ π(ε−1, ‖x‖∞) + ‖x‖∞.

We first consider the case where Ω is bounded and let E ∈ R+ be such
that Ω ⊆ [−E,E]d. Combining (1.75) with Proposition 5 and Lemma
11, we can infer the existence of a multivariate polynomial π1 such that
for all i ∈ N, ε ∈ (0, 1/2), there is a network Φi,ε = (ΦRe

i,ε,ΦIm
i,ε) ∈

NC
d,1 satisfying

‖Re(Mξ(i)Tx(i)g)− ΦRe
i,ε‖L∞(Ω) (1.76)

+ ‖Im(Mξ(i)Tx(i)g)− ΦIm
i,ε‖L∞(Ω) (1.77)

≤ (2E)− d2 ε, (1.78)

with

M(ΦRe
i,ε),M(ΦIm

i,ε) ≤ π1(log(ε−1), log(‖ξ(i)‖∞), log(‖x(i)‖∞)),
B(ΦRe

i,ε),B(ΦIm
i,ε) ≤ π1(ε−1, ‖ξ(i)‖∞, ‖x(i)‖∞).

(1.79)

90



Note that here we did not make the dependence of the connectivity
and the weight upper bounds on d and E explicit as these quantities
are irrelevant for the purposes of what we want to show, as long as
they are finite, of course, which is the case by assumption. Likewise,
we did not explicitly indicate the dependence of π1 on g. As |z| ≤
|Re(z)|+|Im(z)|, it follows from (1.76) that for all i ∈ N, ε ∈ (0, 1/2),

‖ϕi − Φi,ε‖L2(Ω,C)

≤ (2E) d2 ‖ϕi − Φi,ε‖L∞(Ω,C)

≤ (2E) d2
(
‖Re(ϕi)− ΦRe

i,ε‖L∞(Ω) + ‖Im(ϕi)− ΦIm
i,ε‖L∞(Ω)

)
≤ ε.

Moreover, (1.74) and (1.79) imply the existence of a polynomial π2
such that

M(ΦRe
i,ε),M(ΦIm

i,ε) ≤ π2(log(ε−1), log(i)),

B(ΦRe
i,ε),B(ΦIm

i,ε) ≤ π2(ε−1, i),

for all i ∈ N, ε ∈ (0, 1/2). We can therefore conclude that G(g, α, β,Ω)
is effectively representable by neural networks.

We proceed to proving the statement for the case Ω = Rd and g
compactly supported, i.e., there exists E ∈ R+ such that supp(g) ⊆
[−E,E]d. This implies

supp(MξTxg) = supp(Txg)
⊆ x+ [−E,E]d

⊆ [−(‖x‖∞ + E), ‖x‖∞ + E]d.

Again, combining (1.75) with Proposition 5 and Lemma 11 establishes
the existence of a polynomial π3 such that for all x, ξ ∈ Rd, ε ∈
(0, 1/2), there are networks ΨRe

x,ξ,ε,ΨIm
x,ξ,ε ∈ Nd,1 satisfying

‖Re(MξTxg)−ΨRe
x,ξ,ε‖L∞(Sx)

+ ‖Im(MξTxg)−ΨIm
x,ξ,ε‖L∞(Sx)

≤ ε
2sx ,

(1.80)
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with

M(ΨRe
x,ξ,ε),M(ΨIm

x,ξ,ε) ≤ π3(log(ε−1), log(‖x‖∞), log(‖ξ‖∞)),
B(ΨRe

x,ξ,ε),B(ΨIm
x,ξ,ε) ≤ π3(ε−1, ‖x‖∞, ‖ξ‖∞),

where we set Sx := [−(‖x‖∞ + E + 1), ‖x‖∞ + E + 1]d and
sx := |Sx|1/2 to simplify notation. As we want to establish effec-
tive representability for Ω = Rd, the estimate in (1.80) is insufficient.
In particular, we have no control over the behavior of the networks
ΨRe
x,ξ,ε,ΨIm

x,ξ,ε outside the set Sx. We can, however, construct networks
which exhibit the same scaling behavior in terms of M and B, are
supported in Sx, and realize the same output for all inputs in Sx. To
this end let, for y ∈ R+, the network αy ∈ N1,1 be given by

αy(t) := ρ(t− (−y − 1))− ρ(t− (−y))− ρ(t− y)
+ρ(t− (y + 1)), t ∈ R.

Note that αy(t) = 1 for t ∈ [−y, y], αy(t) = 0 for t /∈ [−y− 1, y+ 1],
and αy(t) ∈ (0, 1) else. Next, consider, for x ∈ Rd, the network given
by

χx(t) := ρ

([
d∑
i=1

α‖x‖∞+E(ti)
]
− (d− 1)

)
,

t = (t1, t2, . . . , td) ∈ Rd,

and note that

χx(t) = 1, ∀t ∈ [−(‖x‖∞ + E), ‖x‖∞ + E]d

χx(t) = 0, ∀t /∈ [−(‖x‖∞ + E + 1), ‖x‖∞ + E + 1]d

0 ≤ χx(t) ≤ 1, ∀t ∈ Rd.

As d and E are considered fixed here, there exists a constant C1
such that, for all x ∈ Rd, we have M(χx) ≤ C1 and B(χx) ≤
C1 max{1, ‖x‖∞}. Now, let B := max{1, ‖g‖L∞(R)}. Next, by
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Proposition 2 there exists a constant C2 such that, for all x ∈ Rd,
ε ∈ (0, 1/2), there is a network µx,ε ∈ N1,1 satisfying

sup
y,z∈[−2B,2B]

|µx,ε(y, z)− yz| ≤ ε
4sx , (1.81)

and, for all y ∈ R,

µx,ε(0, y) = µx,ε(y, 0) = 0, (1.82)

withM(µx,ε) ≤ C2(log(ε−1) + log(sx)) and B(µx,ε) ≤ 1. Note that
in the upper bound on M(µx,ε), we did not make the dependence
on B explicit as we consider g fixed for the purposes of the proof.
Next, as E is fixed, there exists a constant C3 such thatM(µx,ε) ≤
C3(log(ε−1) + log(‖x‖∞ + 1)), for all x ∈ Rd, ε ∈ (0, 1/2).

We now take

ΓRe
x,ξ,ε := µx,ε ◦ (ΨRe

x,ξ,ε, χx) and ΓIm
x,ξ,ε := µx,ε ◦ (ΨIm

x,ξ,ε, χx)

according to Lemmas 3 and 1, which ensures the existence of a polyno-
mial π4 such that, for all x, ξ ∈ Rd, ε ∈ (0, 1/2),

M(ΓRe
x,ξ,ε),M(ΓIm

x,ξ,ε) ≤ π4(log(ε−1), log(‖x‖∞), log(‖ξ‖∞)),
B(ΓRe

x,ξ,ε),B(ΓIm
x,ξ,ε) ≤ π4(ε−1, ‖x‖∞, ‖ξ‖∞).

(1.83)

Furthermore,

‖ΓRe
x,ξ,ε − Re(MξTxg)‖L∞(Sx)

≤ ‖µx,ε ◦ (ΨRe
x,ξ,ε, χx)−ΨRe

x,ξ,ε · χx‖L∞(Sx)

+ ‖ΨRe
x,ξ,ε · χx − Re(MξTxg)‖L∞(Sx),

(1.84)

where the first term is upper-bounded by ε
4sx due to (1.81). The second

term on the right-hand side of (1.84) is upper-bounded as follows.
First, note that for t ∈ Sx \ [−(‖x‖∞ + E), ‖x‖∞ + E]d, we have
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Re(MξTxg)(t) = 0 and |χx(t)| ≤ 1, which implies

|ΨRe
x,ξ,ε(t) · χx(t)− Re(MξTxg)(t)|
≤ |ΨRe

x,ξ,ε(t)|
≤ |ΨRe

x,ξ,ε(t)− Re(MξTxg)(t)|+ |Re(MξTxg)(t)|
= |ΨRe

x,ξ,ε(t)− Re(MξTxg)(t)|.

As |χx(t)| = 1 for t ∈ [−(‖x‖∞ + E), ‖x‖∞ + E]d, together with
(1.84), this yields

‖ΓRe
x,ξ,ε − Re(MξTxg)‖L∞(Sx)

≤ ε
4sx + ‖ΨRe

x,ξ,ε − Re(MξTxg)‖L∞(Sx).

The analogous estimate for ‖ΓIm
x,ξ,ε − Im(MξTxg)‖L∞(Sx) is obtained

in exactly the same manner. Together with (1.80), we can finally infer
that, for all x, ξ ∈ Rd, ε ∈ (0, 1/2),

‖Re(MξTxg)− ΓRe
x,ξ,ε‖L∞(Sx)

+ ‖Im(MξTxg)− ΓIm
x,ξ,ε‖L∞(Sx)

≤ ε
sx
.

As MξTxg, ΓRe
x,ξ,ε, and ΓIm

x,ξ,ε are supported in Sx for all x, ξ ∈ Rd,
ε ∈ (0, 1/2), using (1.82), we get

‖Re(MξTxg)− ΓRe
x,ξ,ε‖L2(Rd) + ‖Im(MξTxg)− ΓIm

x,ξ,ε‖L2(Rd)

= ‖Re(MξTxg)− ΓRe
x,ξ,ε‖L2(Sx) + ‖Im(MξTxg)− ΓIm

x,ξ,ε‖L2(Sx)

≤ sx‖Re(MξTxg)− ΓRe
x,ξ,ε‖L∞(Sx)

+ sx‖Im(MξTxg)− ΓIm
x,ξ,ε‖L∞(Sx)

≤ ε.
(1.85)

Consider now, for i ∈ N, ε ∈ (0, 1/2), the complex-valued network
Γi,ε ∈ NC

d,1 given by

Γi,ε := (ΓRe
x(i),ξ(i),ε,ΓIm

x(i),ξ(i),ε)
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and note that, for f ∈ L2(Ω,C),

‖f‖L2(Ω,C) =
(∫

Ω
|f(t)|2dt

) 1
2

=
(∫

Ω
|Re(f(t))|2 + |Im(f(t))|2dt

) 1
2

=
(
‖Re(f)‖2L2(Ω) + ‖Im(f)‖2L2(Ω)

) 1
2

≤ ‖Re(f)‖L2(Ω) + ‖Im(f)‖L2(Ω).

Hence, (1.85) implies that, for all i ∈ N, ε ∈ (0, 1/2),

‖ϕi − Γi,ε‖L2(Rd,C)

= ‖Mξ(i)Tx(i)g − (ΓRe
x(i),ξ(i),ε,ΓIm

x(i),ξ(i),ε)‖L2(Rd,C)

≤ ε.

Finally, using (1.74) in (1.83), it follows that there exists a polynomial
π5 such that for all i ∈ N, ε ∈ (0, 1/2), we have

M(ΓRe
x(i),ξ(i),ε),M(ΓIm

x(i),ξ(i),ε) ≤ π5(log(ε−1), log(i))

and
B(ΓRe

x(i),ξ(i),ε),B(ΓIm
x(i),ξ(i),ε) ≤ π5(ε−1, i),

which finalizes the proof.

Next, we establish the central result of this section. To this end,
we first recall that according to Theorem 7 neural networks provide
optimal approximations for all function classes that are optimally ap-
proximated by affine dictionaries (generated by functions f that can be
approximated well by neural networks). While this universality prop-
erty is significant as it applies to all affine dictionaries, it is perhaps
not completely surprising as affine dictionaries are generated by affine
transformations and neural networks consist of concatenations of affine
transformations and nonlinearities. Gabor dictionaries, on the other
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hand, exhibit a fundamentally different mathematical structure. The
next result shows that neural networks also provide optimal approxima-
tions for all function classes that are optimally approximated by Gabor
dictionaries (again, with generator functions that can be approximated
well by neural networks).

Theorem 11. Let d ∈ N, Ω ⊆ Rd, α, β > 0, g ∈ L2(Rd) ∩ L∞(Rd),
and let G(g, α, β,Ω) be the corresponding Gabor dictionary with or-
dering as defined in (1.66). Assume that Ω is bounded or that Ω = Rd
and g is compactly supported. Further, suppose that there exists a poly-
nomial π such that for every x ∈ Rd, ε ∈ (0, 1/2), there is a network
Φx,ε ∈ Nd,1 satisfying

‖g − Φx,ε‖L∞(x+Ω) ≤ ε,

with M(Φx,ε) ≤ π(log(ε−1), log(‖x‖∞)), B(Φx,ε) ≤
π(ε−1, ‖x‖∞). Then, for all compact function classes C ⊆ L2(Ω), we
have

γ∗,eff
N (C) ≥ γ∗,eff(C,G(g, α, β,Ω)).

In particular, if C is optimally representable by G(g, α, β,Ω) (in the
sense of Definition 7), then C is optimally representable by neural
networks (in the sense of Definition 11).

Proof. The first statement follows from Theorem 5 and Theorem 10,
the second is by Theorem 4.

We complete the program in this section by showing that the Gaus-
sian function satisfies the conditions on the generator g in Theorem 10
for bounded Ω. Gaussian functions are widely used generator functions
for Gabor dictionaries owing to their excellent time-frequency localiza-
tion and their frame-theoretic optimality properties (Gröchenig, 2013).
We hasten to add that the result below can be extended to any generator
function g of sufficiently fast decay and sufficient smoothness.
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Lemma 12. For d ∈ N, let gd ∈ L2(Rd) be given by

gd(x) := e−‖x‖
2
2 .

There exists a constant C > 0 such that, for all d ∈ N and ε ∈ (0, 1/2),
there is a network Φd,ε ∈ Nd,1 satisfying

‖Φd,ε − g‖L∞(Rd) ≤ ε,

withM(Φd,ε) ≤ Cd(log(ε−1))2((log(ε−1))2 + log(d)), B(Φd,ε) ≤
1.

Proof. Observe that gd can be written as the composition h ◦ fd of the
functions fd : Rd → R+ and h : R+ → R given by

fd(x) := ‖x‖22 =
d∑
i=1

x2
i and h(y) := e−y.

By Proposition 2 and Lemma 4, there exists a constant C1 > 0 such
that, for every d ∈ N, D ∈ [1,∞), ε ∈ (0, 1/2), there is a network
Ψd,D,ε ∈ Nd,1 satisfying

sup
x∈[−D,D]d

|Ψd,D,ε(x)− ‖x‖22| ≤ ε
2 , (1.86)

M(Ψd,D,ε) ≤ C1d(log(ε−1) + log(dDe)), B(Ψd,D,ε) ≤ 1.
(1.87)

Moreover, as | dndyn e−y| = |e−y| ≤ 1 for all n ∈ N, y ≥ 0, Lemma 17
implies the existence of a constant C2 > 0 such that for every d ∈ N,
D ∈ [1,∞), ε ∈ (0, 1/2), there is a network Γd,D,ε ∈ N1,1 satisfying

sup
y∈[0,dD2]

|Γd,D,ε(y)− e−y| ≤ ε
2 , (1.88)

M(Γd,D,ε) ≤ C2dD
2((log(ε−1))2 + log(d) + log(dDe)),

B(ΓD,ε) ≤ 1.
(1.89)
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Now, letDε := log(ε−1) and take Φ̃d,ε := Γd,Dε,ε◦Ψd,Dε,ε according
to Lemma 1. Consequently, it follows from (1.87) and (1.89) that there
exists a constant C2 > 0 such that for all d ∈ N, ε ∈ (0, 1/2), we have
M(Φ̃d,ε) ≤ C2d(log(ε−1))2((log(ε−1))2 +log(d)) and B(Φ̃d,ε) ≤ 1.
Moreover, as |e−y| ≤ 1 for all y ≥ 0, combining (1.86) and (1.88)
yields for all ε ∈ (0, 1/2), x ∈ [−Dε, Dε]d,

|g(x)− Φ̃d,ε(x)| = |e−‖x‖2
2 − Γd,Dε,ε(Ψd,Dε,ε(x))|

≤ |e−‖x‖2
2 − e−Ψd,Dε,ε(x)|

+ |e−Ψd,Dε,ε(x) − Γd,Dε,ε(Ψd,Dε,ε(x))|
≤ ε

2 + ε
2 = ε.

We can now use the same approach as in the proof of Theorem 10 to
construct networks Φd,ε supported on the interval [−Dε, Dε]d over
which they approximate g to within error ε, and obey M(Φε) ≤
Cd(log(ε−1))2((log(ε−1))2 + log(d)), B(Φd,ε) ≤ 1 for some abso-
lute constant C. Together with |g(x)| ≤ ε, for all x ∈ Rd\[−Dε, Dε]d,
this completes the proof.

Remark 9. Note that Lemma 12 establishes an approximation result
that is even stronger than what is required by Theorem 10. Specifically,
we achieve ε-approximation over all of Rd with a network that does not
depend on the shift parameter x, while exhibiting the desired growth
rates on M and B, which consequently do not depend on the shift
parameter as well. The idea underlying this construction can be used
to strengthen Theorem 10 to apply to Ω = Rd and generator functions
of unbounded support, but sufficiently rapid decay.

We conclude this section with a remark on the neural network approx-
imation of the real-valued counterpart of Gabor dictionaries known as
Wilson dictionaries (Gröchenig and Samarah, 2000; Gröchenig, 2013)
and consisting of cosine-modulated and time-shifted versions of a given
generator function, see also Appendix C. The techniques developed
in this section, mutatis mutandis, show that neural networks provide
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Kolmogorov-Donoho optimal approximation for all function classes
that are optimally approximated by Wilson dictionaries (generated by
functions that can be approximated well by neural networks). Specif-
ically, we point out that the proofs of Lemma 11 and Theorem 10
explicitly construct neural network approximations of time-shifted and
cosine- and sine-modulated versions of the generator g. As identified in
Table 1, Wilson bases provide optimal nonlinear approximation of (unit)
balls in modulation spaces (Feichtinger, 1981; Gröchenig and Samarah,
2000). Finally, we note that similarly the techniques developed in the
proofs of Lemma 11 and Theorem 10 can be used to establish optimal
representability of Fourier bases.

1.10. IMPROVING POLYNOMIAL
APPROXIMATION RATES TO
EXPONENTIAL RATES

Having established that for all function classes listed in Table 1,
Kolmogorov-Donoho-optimal approximation through neural networks
is possible, this section proceeds to show that neural networks, in addi-
tion to their striking Kolmogorov-Donoho universality property, can
also do something that has no classical equivalent.

Specifically, as mentioned in the introduction, for the class of oscil-
latory textures as considered below and for the Weierstrass function,
there are no known methods that achieve exponential accuracy, i.e.,
an approximation error that decays exponentially in the number of
parameters employed in the approximant. We establish below that deep
networks fill this gap.

Let us start by defining one-dimensional “oscillatory textures” ac-
cording to (Demanet and Ying, 2007). To this end, we recall the follow-
ing definition from Lemma 17,

S[a,b] =
{
f ∈ C∞([a, b],R) : ‖f (n)(x)‖L∞([a,b]) ≤ n!,
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for all n ∈ N0

}
.

Definition 17. Let the sets FD,a,D, a ∈ R+, be given by

FD,a =
{

cos(ag)h : g, h ∈ S[−D,D]
}
.

The efficient approximation of functions in FD,a with a large rep-
resents a notoriously difficult problem due to the combination of the
rapidly oscillating cosine term and the warping function g. The best
approximation results available in the literature (Demanet and Ying,
2007) are based on wave-atom dictionaries11 and yield low-order poly-
nomial approximation rates. In what follows we show that finite-width
deep networks drastically improve these results to exponential approxi-
mation rates.

We start with our statement on the neural network approximation of
oscillatory textures.

Proposition 6. There exists a constant C > 0 such that for all D, a ∈
R+, f ∈ FD,a, and ε ∈ (0, 1/2), there is a network Γf,ε ∈ N1,1
satisfying

‖f − Γf,ε‖L∞([−D,D]) ≤ ε,

with L(Γf,ε) ≤ CdDe((log(ε−1) + log(dae))2 + log(dDe) +
log(dD−1e)),W(Γf,ε) ≤ 32, B(Γf,ε) ≤ 1.

Proof. For D, a ∈ R+, f ∈ FD,a, let gf , hf ∈ S[−D,D] be functions
such that f = cos(agf )hf . Note that Lemma 17 guarantees the exis-
tence of a constant C1 > 0 such that for all D, a ∈ R+, ε ∈ (0, 1/2),
there are networks Ψgf ,ε,Ψhf ,ε ∈ N1,1 satisfying

‖Ψgf ,ε − gf‖L∞([−D,D]) ≤ ε
12dae ,

‖Ψhf ,ε − hf‖L∞([−D,D]) ≤ ε
12dae

(1.90)

11To be precise, the results of (Demanet and Ying, 2007) are concerned with the two-
dimensional case, whereas here we focus on the one-dimensional case. Note, however,
that all our results are readily extended to the multi-dimensional case.
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with L(Ψgf ,ε),L(Ψhf ,ε) ≤ C1dDe(log(( ε
12dae )

−1)2 +
log(dDe) + log(dD−1e)), W(Ψgf ,ε),W(Ψhf ,ε) ≤ 16, and
B(Ψgf ,ε),B(Ψhf ,ε) ≤ 1. Furthermore, Theorem 2 ensures the exis-
tence of a constant C2 > 0 such that for all D, a ∈ R+, ε ∈ (0, 1/2),
there is a neural network Φa,D,ε ∈ N1,1 satisfying

‖Φa,D,ε − cos(a · )‖L∞([−3/2,3/2]) ≤ ε
3 , (1.91)

with L(Φa,D,ε) ≤ C2((log(ε−1))2 + log(d3a/2e)),W(Φa,D,ε) ≤ 9,
and B(Φa,D,ε) ≤ 1. Moreover, due to Proposition 2, there exists a
constant C3 > 0 such that for all ε ∈ (0, 1/2), there is a network
µε ∈ N2,1 satisfying

sup
x,y∈[−3/2,3/2]

|µε(x, y)− xy| ≤ ε
3 , (1.92)

with L(µε) ≤ C3 log(ε−1),W(µε) ≤ 5, and B(µε) ≤ 1. By Lemma
1 there exists a network Ψ1 satisfying Ψ1 = Φa,D,ε ◦ Ψgf ,ε with
W(Ψ1) ≤ 16, L(Ψ1) = L(Φa,D,ε) + L(Ψgf ,ε), and B(Ψ1) ≤ 1.
Furthermore, combining Lemma 2 and Lemma 18, we can conclude
the existence of a network

Ψ2(x) = (Ψ1(x),Ψhf ,ε(x)) = (Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))

withW(Ψ2) ≤ 32,L(Ψ2) = max{L(Φa,D,ε)+L(Ψgf ,ε),L(Ψhf ,ε)},
and B(Ψ2) ≤ 1. Next, for all D, a ∈ R+, f ∈ FD,a, ε ∈ (0, 1/2), we
define the network Γf,ε := µε ◦Ψ2. By (1.90), (1.91), and

sup
x∈R
| ddx cos(ax)| = a,

we have, for all x ∈ [−D,D],

|Φa,D,ε(Ψgf ,ε(x))− cos(agf (x))|
≤ |Φa,D,ε(Ψgf ,ε(x))− cos(aΨgf ,ε(x))|

+ | cos(aΨgf ,ε(x))− cos(agf (x))|
≤ ε

3 + a ε
12dae ≤ 5ε

12 .
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Fig. 1.4: Left: A function in F1,100. Right: The function W 1√
2
,2.

Combining this with (1.90), (1.92), and ‖ cos ‖L∞([−D,D]),
‖f‖L∞([−D,D]) ≤ 1 yields for all x ∈ [−D,D],

|Γf,ε(x)− f(x)|
= |µε(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))− cos(agf (x))hf (x)|
≤ |µε(Φa,D,ε(Ψgf ,ε(x)),Ψhf ,ε(x))− Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)|

+ |Φa,D,ε(Ψgf ,ε(x))Ψhf ,ε(x)− cos(agf (x))Ψhf ,ε(x)|
+ | cos(agf (x))Ψhf ,ε(x)− cos(agf (x))hf (x)|

≤ ε
3 + 5ε

12

(
1 + ε

12dae

)
+ ε

12dae ≤ ε.

Finally, by Lemma 1 there exists a constant C4 such that for all D, a ∈
R+, f ∈ FD,a, ε ∈ (0, 1/2), it holds thatW(Γf,ε) ≤ 32,

L(Γf,ε)
≤ L(µε) + max{L(Φa,D,ε) + L(Ψgf ,ε),L(Ψhf ,ε)}
≤ C4dDe((log(ε−1) + log(dae))2 + log(dDe) + log(dD−1e)),

and B(Γf,ε) ≤ 1.

Finally, we show how the Weierstrass function—a fractal function,
which is continuous everywhere but differentiable nowhere—can be ap-
proximated with exponential accuracy by deep ReLU networks. Specif-
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ically, we consider

Wp,a(x) =
∞∑
k=0

pk cos(akπx), for p ∈ (0, 1/2), a ∈ R+,

with ap ≥ 1,

and let α = − log(p)
log(a) , see Figure 1.4 right for an example. It is well

known (Zygmund, 2002) that Wp,a possesses Hölder smoothness α
which may be made arbitrarily small by suitable choice of a. While
classical approximation methods achieve polynomial approximation
rates only, it turns out that finite-width deep networks yield exponential
approximation rates. This is formalized as follows.

Proposition 7. There exists a constant C > 0 such that for all ε, p ∈
(0, 1/2), D, a ∈ R+, there is a network Ψp,a,D,ε ∈ N1,1 satisfying

‖Ψp,a,D,ε −Wp,a‖L∞([−D,D]) ≤ ε,

with L(Ψp,a,D,ε) ≤ C((log(ε−1))3 + (log(ε−1))2 log(dae) +
log(ε−1) log(dDe)),W(Ψp,a,D,ε) ≤ 13, B(Ψp,a,D,ε) ≤ 1.

Proof. For every N ∈ N, p ∈ (0, 1/2), a ∈ R+, x ∈ R, let
SN,p,a(x) =

∑N
k=0 p

k cos(akπx) and note that

|SN,p,a(x)−Wp,a(x)| ≤
∞∑

k=N+1
|pk cos(akπx)|

≤
∞∑

k=N+1
pk = 1

1−p −
1−pN+1

1−p

≤ 2−N .

(1.93)

Let Nε := dlog(2/ε)e for ε ∈ (0, 1/2). Next, note that Theorem 2
ensures the existence of a constant C1 > 0 such that for all D, a ∈ R+,
k ∈ N0, ε ∈ (0, 1/2), there is a network φak,D,ε ∈ N1,1 satisfying

‖φak,D,ε − cos(akπ · )‖L∞([−D,D]) ≤ ε
4 , (1.94)
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with L(φak,D,ε) ≤ C1((log(ε−1))2 + log(dakπDe)),W(φak,D,ε) ≤
9, B(φak,D,ε) ≤ 1. Let A : R3 → R3 and B : R3 → R be the affine
transformations given by A(x1, x2, x3) = (x1, x1, x2 + x3)T and
B(x1, x2, x3) = x2 + x3, respectively. We now define, for all p ∈
(0, 1/2), D, a ∈ R+, k ∈ N0, ε ∈ (0, 1/2), the networks

ψp,a,0D,ε (x) =

 x

p0φa0,D,ε(x)
0


and

ψp,a,kD,ε (x1, x2, x3) =

 x1
pkφak,D,ε(x2)

x3

 , k > 0,

and, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2), the network

Ψp,a,D,ε := B ◦ ψp,a,NεD,ε ◦A ◦ ψp,a,Nε−1
D,ε ◦ · · · ◦A ◦ ψp,a,0D,ε .

Due to (1.94) we get, for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2),
x ∈ [−D,D], that

|Ψp,a,D,ε(x)− SNε,p,a(x)|

=

∣∣∣∣∣
Nε∑
k=0

pkφak,D,ε(x)−
Nε∑
k=0

pk cos(akπx)

∣∣∣∣∣
≤

Nε∑
k=0

pk|φak,D,ε(x)− cos(akπx)|

≤ ε
4

Nε∑
k=0

2−k ≤ ε
2 .

Combining this with (1.93) establishes, for all p ∈ (0, 1/2), D, a ∈
R+, ε ∈ (0, 1/2), x ∈ [−D,D],

|Ψp,a,D,ε(x)−Wp,a(x)| ≤ 2−dlog( 2
ε )e + ε

2 ≤ ε
2 + ε

2 = ε.
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Applying Lemmas 1, 2, and 3 establishes the existence of a constant
C2 such that for all p ∈ (0, 1/2), D, a ∈ R+, ε ∈ (0, 1/2),

L(Ψp,a,D,ε)

≤
Nε∑
k=0

(L(φak,D,ε) + 1)

≤ Nε + 1 + (Nε + 1)C1((log(ε−1))2 + log(daNεπDe))
≤ C2((log(ε−1))3 + (log(ε−1))2 log(dae) + log(ε−1) log(dDe)),

W(Ψp,a,D,ε) ≤ 13, and B(Ψp,a,D,ε) ≤ 1.

We finally note that the restriction p ∈ (0, 1/2) in Proposition 7 was
made for simplicity of exposition and can be relaxed to p ∈ (0, r), with
r < 1, while only changing the constant C.

1.11. IMPOSSIBILITY RESULTS FOR
FINITE-DEPTH NETWORKS

The recent successes of neural networks in machine learning appli-
cations have been enabled by various technological factors, but they
all have in common the use of deep networks as opposed to shallow
networks studied intensely in the 1990s. It is hence of interest to un-
derstand whether the use of depth offers fundamental advantages. In
this spirit, the goal of this section is to make a formal case for depth in
neural network approximation by establishing that, for nonconstant pe-
riodic functions, finite-width deep networks require asymptotically—in
the function’s “highest frequency"—smaller connectivity than finite-
depth wide networks. This statement is then extended to sufficiently
smooth nonperiodic functions, thereby formalizing the benefit of deep
networks over shallow networks for the approximation of a broad class
of functions.

We start with preparatory material taken from (Telgarsky, 2015).
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Definition 18 ((Telgarsky, 2015)). Let k ∈ N. A function f : R→ R
is called k-sawtooth if it is piecewise linear with no more than k pieces,
i.e., its domain R can be partitioned into k intervals such that f is
linear on each of these intervals.

Lemma 13 ((Telgarsky, 2015)). Every Φ ∈ N1,1 is (2W(Φ))L(Φ)-
sawtooth.

Definition 19. For a u-periodic function f ∈ C(R), we define

ξ(f) := sup
δ∈[0,u)

inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([δ,δ+u]).

The quantity ξ(f) measures the error incurred by the best linear
approximation of f on any segment of length equal to the period of
f ; ξ(f) can hence be interpreted as quantifying the nonlinearity of f .
The next result states that finite-depth networks with width and hence
also connectivity scaling polylogarithmically in the “highest frequency”
of the periodic function to be approximated can not achieve arbitrarily
small approximation error.

Proposition 8. Let f ∈ C(R) be a nonconstant u-periodic function,
L ∈ N, and π a polynomial. Then, there exists an a ∈ N such that for
every network Φ ∈ N1,1 with L(Φ) ≤ L andW(Φ) ≤ π(log(a)), we
have

‖f(a · )− Φ‖L∞([0,u]) ≥ ξ(f) > 0.

Proof. First note that there exists an even a ∈ N such that a/2 >

(2π(log(a)))L. Lemma 13 now implies that every network Φ ∈ N1,1
with L(Φ) ≤ L and W(Φ) ≤ π(log(a)) is (2π(log(a)))L-sawtooth
and therefore consists of no more than a/2 different linear pieces.
Hence, there exists an interval [u1, u2] ⊆ [0, u] with u2−u1 ≥ (2u/a)
on which Φ is linear. Since u2 − u1 ≥ (2u/a) the interval supports

106



two full periods of f(a · ) and we can therefore conclude that

‖f(a · )− Φ‖L∞([0,u]) ≥ ‖f(a · )− Φ‖L∞([u1,u2])

≥ inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([0,2u])

≥ sup
δ∈[0,u)

inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([δ,u+δ])

= ξ(f).

Finally, note that ξ(f) > 0 as ξ(f) = 0 for u-periodic f ∈ C(R)
necessarily implies that f is constant, which, however, is ruled out by
assumption.

Application of Proposition 8 to f(x) = cos(x) shows that finite-
depth networks, owing to ξ(cos) > 0, require faster than polylogarith-
mic growth of connectivity in a to approximate x 7→ cos(ax) with
arbitrarily small error, whereas finite-width networks, due to Theorem
2, can accomplish this with polylogarithmic connectivity growth.

The following result from (Frenzen et al., 2010) allows a similar
observation for functions that are sufficiently smooth.

Theorem 12 ((Frenzen et al., 2010)). Let [a, b] ⊆ R, f ∈ C3([a, b]),
and for ε ∈ (0, 1/2), let s(ε) ∈ N denote the smallest number such
that there exists a piecewise linear approximation of f with s(ε) pieces
and error at most ε in L∞([a, b])-norm. Then, it holds that

s(ε) ∼ c√
ε
, ε→ 0, where c = 1

4

∫ b

a

√
|f ′′(x)|dx.

Combining this with Lemma 13 yields the following result on depth-
width tradeoff for three-times continuously differentiable functions.

Theorem 13. Let f ∈ C3([a, b]) with
∫ b
a

√
|f ′′(x)|dx > 0, L ∈ N,

and π a polynomial. Then, there exists ε > 0 such that for every
network Φ ∈ N1,1 with L(Φ) ≤ L and W(Φ) ≤ π(log(ε−1)), we
have

‖f − Φ‖L∞([a,b]) > ε.
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Proof. The proof will be effected by contradiction. Assume that for
every ε > 0, there exists a network Φε ∈ N1,1 with L(Φε) ≤ L,
W(Φε) ≤ π(log(ε−1)), and ‖f − Φε‖L∞([a,b]) ≤ ε. By Lemma 13
every (ReLU) neural network realizes a piecewise linear function. Ap-
plication of Theorem 12 hence allows us to conclude the existence of
a constant C such that, for all ε > 0, the network Φε must have at
least Cε−

1
2 different linear pieces. This, however, leads to a contradic-

tion as, by Lemma 13, Φε is at most (2π(log(ε−1)))L-sawtooth and
π̃(log(ε−1)) ∈ o(ε−1/2), ε→ 0, for every polynomial π̃.

In summary, we have hence established that any function which is
at least three times continuously differentiable (and does not have a
vanishing second derivative) cannot be approximated by finite-depth
networks with connectivity scaling polylogarithmically in the inverse
of the approximation error. Our results in Section 1.3 establish that,
in contrast, this “is" possible with finite-width deep networks for var-
ious interesting types of smooth functions such as polynomials and
sinusoidal functions. Further results on the limitations of finite-depth
networks akin to Theorem 13 were reported in (Petersen and Voigtlaen-
der, 2018).

1.12. APPENDICES

A. Auxiliary neural network constructions

The following three results are concerned with the realization of affine
transformations of arbitrary weights by neural networks with weights
upper-bounded by 1.

Lemma 14. Let d ∈ N and a ∈ R. There exists a network Φa ∈ Nd,d
satisfying Φa(x) = ax, with L(Φa) ≤ blog(|a|)c + 4,W(Φa) ≤ 3d,
B(Φa) ≤ 1.

Proof. First note that for |a| ≤ 1 the claim holds trivially, which can
be seen by taking Φa to be the affine transformation x 7→ ax and
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interpreting it according to Definition 1 as a depth-1 neural network.
Next, we consider the case |a| > 1 for d = 1, set K := blog(a)c,
α := a2−(K+1), and define A1 := (1,−1)T ∈ R2×1,

A2 :=

1 0
1 1
0 1

 ∈ R3×2,

Ak :=

 1 1 −1
1 1 1
−1 1 1

 ∈ R3×3, k ∈ {3, . . . ,K + 3},

andAK+4 := (α, 0,−α). Note that (ρ◦A2◦ρ◦A1)(x) = (ρ(x), ρ(x)+
ρ(−x), ρ(−x)) and ρ(Ak(x, x + y, y)T ) = 2(x, x + y, y), for k ∈
{3, . . . ,K + 3}. The network Ψa := AK+4 ◦ ρ ◦ · · · ◦ ρ ◦ A1 hence
satisfies Ψa(x) = ax, L(Ψa) = blog(a)c + 4, W(Ψa) = 3, and
B(Φa) ≤ 1. Applying Lemma 3 to get a parallelization of d copies of
Ψa completes the proof.

Corollary 2. Let d, d′ ∈ N, a ∈ R+, A ∈ [−a, a]d′×d, and b ∈
[−a, a]d′ . There exists a network ΦA,b ∈ Nd,d′ satisfying ΦA,b(x) =
Ax + b, with L(ΦA,b) ≤ blog(|a|)c + 5, W(ΦA,b) ≤ max{d, 3d′},
B(ΦA,b) ≤ 1.

Proof. Let Φa ∈ Nd′,d′ be the multiplication network from Lemma
14, consider W (x) := a−1(Ax + b) as a 1-layer network, and take
ΦA,b := Φa ◦W according to Lemma 1.

Proposition 9. Let d, d′ ∈ N and Φ ∈ Nd,d′ . There exists a network
Ψ ∈ Nd,d′ satisfying Ψ(x) = Φ(x), for all x ∈ Rd, and with L(Ψ) ≤
(dlog(B(Φ))e+ 5)L(Φ),W(Ψ) ≤ max{3d′,W(Φ)}, B(Ψ) ≤ 1.

Proof. We write Φ = WL(Φ) ◦ ρ ◦ . . . ◦ ρ ◦ W1 and set W̃` :=
(B(Φ))−1W`, for ` ∈ {1, . . . ,L(Φ)}, and a := B(Φ)L(Φ). Let Φa ∈
Nd′,d′ be the multiplication network from Lemma 14 and define

Φ̃ := W̃L(Φ) ◦ ρ ◦ · · · ◦ ρ ◦ W̃1,
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and Ψ := Φa ◦ Φ̃ according to Lemma 1. Note that Φ̃ has weights
upper-bounded by 1 and is of the same depth and width as Φ. As ρ is
positively homogeneous, i.e., ρ(λx) = λρ(x), for all λ ≥ 0, x ∈ R,
we have Ψ(x) = Φ(x), for all x ∈ Rd. Application of Lemma 1 and
Lemma 14 completes the proof.

Next we record a technical Lemma on how to realize a sum of
networks with the same input by a network whose width is independent
of the number of constituent networks.

Lemma 15. Let d, d′ ∈ N, N ∈ N, and Φi ∈ Nd,d′ , i ∈ {1, . . . , N}.
There exists a network Φ ∈ Nd,d′ satisfying

Φ(x) =
N∑
i=1

Φi(x), for allx ∈ Rd,

with L(Φ) =
∑N
i=1 L(Φi), W(Φ) ≤ 2d + 2d′ +

max{2d,maxi{W(Φi)}}, B(Φ) = max{1,maxi B(Φi)}.

Proof. We set Li = L(Φi) and write the networks Φi as

Φi = W i
Li ◦ ρ ◦W i

Li−1 ◦ ρ ◦ · · · ◦ ρ ◦W i
1,

with W i
` (x) = Ai`x + bi`, where Ai` ∈ RN

i
`×N

i
`−1 and bi` ∈ RNi` .

Next, using Lemma 2, we turn the identity matrices Id and Id′ into
networks Iid and Iid′ , respectively, of depth Li and then parallelize
these networks, according to Lemma 3, to get Ψi := (Iid, Iid′ , Φi). Let
V i1 (x) = Ei1x+ f i1 and V iLi(x) = EiLix+ f iLi denote the first and last,
respectively, affine transformation of the network Ψi. By construction
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we have

Ei1 =


Id 0 0
−Id 0 0

0 Id′ 0
0 −Id′ 0
0 0 Ai1

 ∈ R(2d+2d′+Ni1)×(2d+d′),

f i1 =


0
0
0
0
bi1

 ∈ R2d+2d′+Ni1

and

EiLi =

Id −Id 0 0 0
0 0 Id′ −Id′ 0
0 0 0 0 AiLi

 ∈ R(d+2d′)×(2d+2d′+NiLi−1),

f iLi =

 0
0
biLi

 ∈ Rd+2d′ .

Next, we define the matrices

Ain :=

Id
0
Id

 ∈ R(2d+d′)×d,

A :=

Id 0 0
0 Id′ Id′
Id 0 0

 ∈ R(2d+d′)×(d+2d′),

Aout :=
(
0 Id′ Id′

)
∈ Rd

′×(d+2d′),

and note that Ainx = (x, 0, x), A(x, y, z)T = (x, y + z, x)T , and
Aout(x, y, z)T = y + z, for x ∈ Rd, y, z ∈ Rd′ . We construct

• the network Ψ̃1 by taking Ψ1 and replacing E1
1 with E1

1Ain, E1
L1

with AE1
L1

, and f1
L1

with Af1
L1

,
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• the network Ψ̃N by taking ΨN and replacing ENLN with AoutE
N
LN

and fNLN with Aoutf
N
LN

,

• the networks Ψ̃i, i ∈ {2, . . . , N − 1} by taking Ψi and replacing
EiLi with AEiLi and f iLi with Af iLi .

We can now verify that

Φ = Ψ̃N ◦ Ψ̃N−1 ◦ · · · ◦ Ψ̃1,

when the compositions are taken in the sense of Lemma 1. Due to
Lemmas 2 and 3, we have L(Ψi) = L(Φi), W(Ψi) = 2d + 2d′ +
W(Φi), and B(Ψi) = max{1,B(Φi)}. The proof is finalized by noting
that, owing to the structure of the involved matrices, the depth and the
weight magnitude remain unchanged by turning Ψi into Ψ̃i, whereas
the width can not increase, but may decrease owing to the replacement
of E1

1 by E1
1Ain.

The following lemma shows how to patch together local approxima-
tions using multiplication networks and a partition of unity consisting
of hat functions. We note that this argument can be extended to higher
dimensions using tensor products (which can be realized efficiently
through multiplication networks) of the one-dimensional hat function.

Lemma 16. Let ε ∈ (0, 1/2), n ∈ N, a0 < a1 < · · · < an ∈ R,
f ∈ L∞([a0, an]), and

A :=
⌈

max{|a0|, |an|, 2 max
i∈{2,...,n−1}

1
|ai−ai−1|}

⌉
,

B := max{1, ‖f‖L∞([a0,an])}.

Assume that for every i ∈ {1, . . . , n − 1}, there exists a network
Φi ∈ N1,1 with ‖f − Φi‖L∞([ai−1,ai+1]) ≤ ε/3. Then, there is a
network Φ ∈ N1,1 satisfying

‖f − Φ‖L∞([a0,an]) ≤ ε,
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with L(Φ) ≤ ∑n−1
i=1 L(Φi) + Cn(log(ε−1) + log(B) + log(A)),

W(Φ) ≤ 7 + max{2, max
i∈{1,...,n−1}

W(Φi)}, B(Φ) =

max{1,maxi B(Φi)}, and with C > 0 an absolute constant,
i.e., independent of ε, n, f, a0, . . . , an.

Proof. We first define the neural networks (Ψi)n−1
i=1 ∈ N1,1 forming a

partition of unity according to

Ψ1(x) := 1− 1
a2−a1

ρ(x− a1) + 1
a2−a1

ρ(x− a2),

Ψi(x) := 1
ai−ai−1

ρ(x− ai−1)

− ( 1
ai−ai−1

+ 1
ai+1−ai ) ρ(x− ai)

+ 1
ai+1−ai ρ(x− ai+1), i ∈ {2, . . . , n− 2},

Ψn−1(x) := 1
an−1−an−2

ρ(x− an−2)− 1
an−1−an−2

ρ(x− an−1).

Note that supp(Ψ1) = (∞, a2), supp(Ψn−1) = [an−2,∞), and
supp(Ψi) = [ai−1, ai+1]. Proposition 9 now ensures that, for all
i ∈ {1, . . . , n − 1}, Ψi can be realized as a network with L(Ψi) ≤
2(dlog(A)e+5),W(Ψi) ≤ 3, and B(Ψi) ≤ 1. Next, let ΦB+1/6,ε/3 ∈
N2,1 be the multiplication network according to Proposition 2 and
define the networks

Φ̃i(x) := ΦB+1/6,ε/3(Φi(x),Ψi(x))

according to Lemma 3 and Lemma 1, along with their sum

Φ(x) :=
n−1∑
i=1

Φ̃i(x)

according to Lemma 15. Proposition 2 ensures, for all i ∈ {1, . . . , n−
1}, x ∈ [ai−1, ai+1], that

|f(x)Ψi(x)− Φ̃i(x)| ≤ |f(x)Ψi(x)− Φi(x)Ψi(x)|
+ |Φi(x)Ψi(x)− ΦB+1/6,ε/3(Φi(x),Ψi(x))|
≤ (Ψi(x) + 1) ε3
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and supp(Φ̃i) = [ai−1, ai+1]. In particular, for every x ∈ [a0, an], the
set

I(x) := {i ∈ {1, . . . , n− 1} : Φ̃i(x) 6= 0}

of active indices contains at most two elements. Moreover, we have∑
i∈I(x) Ψi(x) = 1 by construction, which implies that, for all x ∈ R,

|f(x)− Φ(x)| =

∣∣∣∣∣∣
∑
i∈I(x)

Ψi(x)f(x)−
∑
i∈I(x)

Φ̃i(x)

∣∣∣∣∣∣
≤
∑
i∈I(x)

(Ψi(x) + 1) ε3 ≤ ε.

Due to Lemma 1, Lemma 3, Proposition 2, and Lemma 15, we can
conclude that Φ, indeed, satisfies the claimed properties.

Next, we present an extension of Lemma 6 to arbitrary (finite) inter-
vals.

Lemma 17. For a, b ∈ R with a < b, let

S[a,b] :=
{
f ∈ C∞([a, b],R) : ‖f (n)(x)‖L∞([a,b]) ≤ n!,

for all n ∈ N0

}
.

There exists a constant C > 0 such that for all a, b ∈ R with a < b,
f ∈ S[a,b], and ε ∈ (0, 1/2), there is a network Ψf,ε ∈ N1,1 satisfying

‖Ψf,ε − f‖L∞([a,b]) ≤ ε,

with L(Ψf,ε) ≤ C max{2, (b − a)}((log(ε−1))2 +
log(dmax{|a|, |b|}e) + log(d 1

b−ae)),W(Ψf,ε) ≤ 16, B(Ψf,ε) ≤ 1.

Proof. We first recall that the case [a, b] = [−1, 1] has already been
dealt with in Lemma 6. Here, we will first prove the statement for the
interval [−D,D] with D ∈ (0, 1) and then use this result to establish
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the general case through a patching argument according to Lemma 16.
We start by noting that for g ∈ S[−D,D], the function fg : [−1, 1] →
R, x 7→ g(Dx) is in S[−1,1] due to D < 1. Hence, by Lemma 6, there
exists a constant C > 0 such that for all g ∈ S[−D,D] and ε ∈ (0, 1/2),
there is a network Ψ̃g,ε ∈ N1,1 satisfying ‖Ψ̃g,ε − fg‖L∞([−1,1]) ≤ ε,
with L(Ψ̃g,ε) ≤ C(log(ε−1))2, W(Ψ̃g,ε) ≤ 9, B(Ψ̃g,ε) ≤ 1. The
claim is then established by taking the network approximating g to be
Ψg,ε := Ψ̃g,ε ◦ΦD−1 , where ΦD−1 is the scalar multiplication network
from Lemma 14, and noting that

‖Ψg,ε(x)− g(x)‖L∞([−D,D]) = sup
x∈[−D,D]

|Ψ̃g,ε( xD )− fg( xD )|

= sup
x∈[−1,1]

|Ψ̃g,ε(x)− fg(x)| ≤ ε.

Due to Lemma 1, we have L(Ψg,ε) ≤ C((log(ε−1))2 + log(d 1
D e)),

W(Ψg,ε) ≤ 9, and B(Ψg,ε) ≤ 1. We are now ready to proceed to
the proof of the statement for general intervals [a, b]. This will be
accomplished by approximating f on intervals of length no more than
2 and stitching the resulting approximations together according to
Lemma 16. We start with the case b − a ≤ 2 and note that here we
can simply shift the function by (a+ b)/2 to center its domain around
the origin and then use the result above for approximation on [−D,D]
with D ∈ (0, 1) or Lemma 6 if b − a = 2, both in combination with
Corollary 2 to realize the shift through a neural network with weights
bounded by 1. Using Lemma 1 to implement the composition of the
network realizing this shift with that realizing g, we can conclude
the existence of a constant C ′ > 0 such that, for all [a, b] ⊆ R with
b− a ≤ 2, g ∈ S[a,b], ε ∈ (0, 1/2), there is a network satisfying ‖g −
Ψg,ε‖L∞([a,b]) ≤ ε with L(Ψg,ε) ≤ C ′((log(ε−1))2 + log(d 1

b−ae)),
W(Ψg,ε) ≤ 9, and B(Ψg,ε) ≤ 1. Finally, for b− a > 2, we partition
the interval [a, b] and apply Lemma 16 as follows. We set n := db− ae
and define

ai := a+ i b−an , i ∈ {0, . . . , n}.
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Next, for i ∈ {1, . . . , n−1}, let gi : [ai−1, ai+1]→ R be the restriction
of g to the interval [ai−1, ai+1], and note that ai+1 − ai−1 = 2(b−a)

n ∈
( 4

3 , 2]. Furthermore, for i ∈ {1, . . . , n− 1}, let Ψgi,ε/3 be the network
approximating gi with error ε/3 as constructed above. Then, for every
i ∈ {1, . . . , n− 1}, it holds that ‖g−Ψgi,ε/3‖L∞([ai−1,ai+1]) ≤ ε

3 and
application of Lemma 16 yields the desired result.

We finally record, for technical purposes, slight variations of Lem-
mas 3 and 4 to account for parallelizations and linear combinations,
respectively, of neural networks with shared input.

Lemma 18. Let n, d, L ∈ N and, for i ∈ {1, 2, . . . , n}, let d′i ∈
N and Φi ∈ Nd,d′

i
with L(Φi) = L. Then, there exists a network

Ψ ∈ Nd,∑n

i=1
d′
i

with L(Ψ) = L,M(Ψ) =
∑n
i=1M(Φi),W(Ψ) ≤∑n

i=1W(Φi), B(Ψ) = maxi B(Φi), and satisfying

Ψ(x) = (Φ1(x),Φ2(x), . . . ,Φn(x)) ∈ R
∑n

i=1
d′i ,

for x ∈ Rd.

Proof. The claim is established by following the construction in the
proof of Lemma 3, but with the matrix A1 = diag(A1

1, A
2
1, . . . , A

n
1 )

replaced by

A1 =

A
1
1

...
An1

 ∈ R(
∑n

i=1
Ni1)×d,

where N i
1 is the dimension of the first layer of Φi.

Lemma 19. Let n, d, d′, L ∈ N and, for i ∈ {1, 2, . . . , n}, let
ai ∈ R and Φi ∈ Nd,d′ with L(Φi) = L. Then, there exists a
network Ψ ∈ Nd,d′ with L(Ψ) = L, M(Ψ) ≤ ∑n

i=1M(Φi),
W(Ψ) ≤∑n

i=1W(Φi), B(Ψ) = maxi{|ai|B(Φi)}, and satisfying

Ψ(x) =
n∑
i=1

aiΦi(x) ∈ Rd
′
,
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for x ∈ Rd.

Proof. The proof follows directly from that of Lemma 18 with the
same modifications as those needed in the proof of Lemma 4 relative
to that of Lemma 3.

B. Tail compactness for Besov spaces

We consider the Besov space Bmp,q([0, 1]) (Mallat, 2008) given by the
set of functions f ∈ L2([0, 1]) satisfying

‖f‖m,p,q := ‖(2n(m+ 1
2−

1
p )‖(〈f, ψn,k〉)2n−1

k=0 ‖`p)n∈N0‖`q <∞,
(1.95)

with D = {ψn,k : n ∈ N0, k = 0, . . . , 2n− 1} an orthonormal wavelet
basis12 for L2([0, 1]) and `p denoting the usual sequence norm

‖(ai)i∈I‖`p =
{(∑

i∈I |ai|p
) 1
p , 1 ≤ p <∞

supi∈I |ai|, p =∞
.

The unit ball in Bmp,q([0, 1]) is

U(Bmp,q([0, 1])) = {f ∈ L2([0, 1]) : ‖f‖m,p,q ≤ 1}. (1.96)

For simplicity of notation, we set an,k(f) := 〈f, ψn,k〉 and An(f) :=
(an,k(f))2n−1

k=0 ∈ R2n , for n ∈ N0. We now want to verify that for q ∈
[1, 2] tail compactness holds for the pair (U(Bmp,q([0, 1])),D) under the
orderingD = (D0,D1, . . . ), whereDn := {ψn,k : k = 0, . . . , 2n−1}.
To this end, we first note that owing to

∑N
n=0 |Dn| = 2N+1 − 1, we

have tail compactness according to (1.26) if there exist C, β > 0 such
that for all f ∈ U(Bmp,q([0, 1])), N ∈ N,∥∥∥∥∥f −

N∑
n=0

2n−1∑
k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

≤ C(2N+1)−β . (1.97)

12The space does not depend on the particular choice of mother wavelet ψ as long as
ψ has at least r vanishing moments and is in Cr([0, 1]) for some r > m. For further
details we refer to Section 9.2.3 in (Mallat, 2008).
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To see that (1.95) implies (1.97), we note that by orthonormality of D,∥∥∥∥∥f −
N∑
n=0

2n−1∑
k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

=

∥∥∥∥∥
∞∑

n=N+1

2n−1∑
k=0

an,k(f)ψn,k

∥∥∥∥∥
L2([0,1])

=
( ∞∑
n=N+1

2n−1∑
k=0
|an,k(f)|2

) 1
2

= ‖(‖An(f)‖`2)∞n=N+1‖`2 .

As the An(f) are finite sequences of length |Dn| = 2n, it fol-
lows, by application of Hölder’s inequality, that ‖An(f)‖`2 ≤
2n( 1

2−
1
p )‖An(f)‖`p . Together with ‖ · ‖`2 ≤ ‖ · ‖`q , for q ≤ 2, (1.95)

then ensures, for all f ∈ U(Bmp,q([0, 1])) and q ∈ [1, 2], that

‖(‖An(f)‖`2)∞n=N+1‖`2

≤ ‖(2n( 1
2−

1
p )‖An(f)‖`p)∞n=N+1‖`q

≤ 2−(N+1)m‖(2n(m+ 1
2−

1
p )‖An(f)‖`p)∞n=N+1‖`q

≤ 2−(N+1)m‖f‖m,p,q ≤ (2N+1)−m,

which establishes (1.97) with C = 1 and β = m.

C. Tail compactness for modulation spaces

We consider tail compactness for unit balls in (polynomially) weighted
modulation spaces, which, for p, q ∈ [1,∞), are defined as follows

Ms
p,q(R) := {f : ‖f‖Ms

p,q(R) <∞},

with

‖f‖Ms
p,q(R) :=

(∫
R

(∫
R
|Vwf(x, ξ)|p(1 + |x|+ |ξ|)spdx

) q
p

dξ
) 1
q

,
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where

Vwf(x, ξ) :=
∫
R
f(t)w(t− x)e−2πitξdt, x, ξ ∈ R,

is the short-time Fourier transform of f with respect to the window
function13 w ∈ S(R).

Next, let g ∈ L2(R) with ‖g‖L2(R) = 1 and g(x) = g(−x) such
that the Gabor dictionary G(g, 1

2 , 1,R) is a tight frame (Morgenshtern
and Bölcskei, 2012) for L2(R). Then, the Wilson dictionary D =
{ψk,n : (k, n) ∈ Z× N0} with

ψk,0 = Tkg, k ∈ Z,
ψk,n = 1√

2T k2
(Mn + (−1)k+nM−n)g, (k, n) ∈ Z× N,

is an orthonormal basis for L2(R) (see (Gröchenig, 2013, Thm. 8.5.1)).
We have, for every f ∈ Ms

p,q(R), the expansion (Gröchenig, 2013,
Thm. 12.3.4)

f =
∑

(k,n)∈Z×N0

ck,n(f)ψk,n,

where ck,n(f) = 〈f, ψk,n〉, c(f) ∈ `sp,q(Z× N0),

with `sp,q(Z× N0) the space of sequences c ∈ RZ×N0 satisfying

‖c‖`sp,q(Z×N0) :=

∑
n∈N0

(∑
k∈Z
|ck,n|p(1 + |k2 |+ |n|)sp

) q
p

 1
q

<∞.

Moreover, there exists (Gröchenig, 2013, Thm. 12.3.1) a constant
D ≥ 1 such that, for all f ∈Ms

p,q(R),

1
D‖f‖Ms

p,q(R) ≤ ‖c(f)‖`sp,q(Z×N0) ≤ D‖f‖Ms
p,q(R).

13The resulting modulation space does not depend on the specific choice of
window function w as long as w is in the Schwartz space S(R) = {f ∈
C∞(R) : supx∈R |xαf (β)(x)| < ∞, for all α, β ∈ N0}, where f (n) stands for
the n-th derivative of f .
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In particular, we can characterize the unit ball of Ms
p,q(R) according to

U(Ms
p,q(R)) = {f : ‖c(f)‖`sp,q(Z×N0) ≤ D}.

We now order the Wilson basis dictionary as follows. Define D0 :=
{ψ0,0} and

D` := {ψk,n : |k|, n ≤ `} \
`−1⋃
i=0
Di

for ` ≥ 1, and order the overall dictionary according to D =
(D0,D1, . . . ). Owing to

∑N
`=0 |D`| = (2N + 1)(N + 1), we have

tail compactness for the pair (U(Ms
p,q(R)),D) if there exist C, β > 0

such that, for all f ∈ U(Ms
p,q(R)), N ∈ N,∥∥∥∥∥f −

N∑
n=0

N∑
k=−N

ck,n(f)ψk,n

∥∥∥∥∥
L2(R)

≤ CN−β . (1.98)

We restrict our attention to p, q ≤ 2 and use orthonormality ofD and the
fact that ‖ · ‖`2 ≤ ‖ · ‖`p , for p ≤ 2, to obtain, for all f ∈ U(Ms

p,q(R)),∥∥∥∥∥f −
N∑
n=0

N∑
k=−N

ck,n(f)ψk,n

∥∥∥∥∥
L2(R)

=

∥∥∥∥∥∥
∑
n>N

∑
|k|>N

ck,n(f)ψk,n

∥∥∥∥∥∥
L2(R)

=

∑
n>N

∑
|k|>N

|ck,n(f)|2
 1

2

≤

∑
n>N

 ∑
|k|>N

|ck,n(f)|p


q
p


1
q

≤ (1 + 3
2N)−s

∑
n>N

 ∑
|k|>N

|ck,n(f)|p(1 + |k2 |+ |n|)sp


q
p


1
q

≤ (1 + 3
2N)−s‖c(f)‖`sp,q(Z×N0) ≤ (3/2)−sDN−s,

which establishes tail compactness with C = (3/2)−sD and β = s.
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CHAPTER 2

High-dimensional distribution

generation through deep neural

networks

2.1. INTRODUCTION

Deep neural networks have been employed very successfully as gen-
erative models for complex natural data such as images Radford et al.
(2016); Karras et al. (2019) and natural language Bowman et al. (2016);
Xu et al. (2018). Specifically, the idea is to train deep networks so
that they realize complex high-dimensional probability distributions by
transforming samples taken from simple low-dimensional distributions
such as uniform or Gaussian Kingma and Welling (2014); Goodfellow
et al. (2014); Arjovsky et al. (2017).

Generative networks with output dimension higher than the input
dimension occur, for instance, in language modelling where deep net-
works are used to predict the next word in a text sequence. Here, the
input layer size is determined by the dimension of the word embedding
(typically ∼ 100) and the output layer, representing a vector of prob-
abilities for each of the words in the vocabulary, is of the size of the
vocabulary (typically ∼ 100k). Another example where the dimension
of the output distribution is mandated to be higher than that of the input
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distribution is given by explicit Kingma and Welling (2014); Tolstikhin
et al. (2018) and implicit Goodfellow et al. (2014); Arjovsky et al.
(2017) density generative networks.

Notwithstanding the practical success of deep generative networks, a
profound theoretical understanding of their representational capabilities
is still lacking. First results along these lines appear in Lee et al. (2017),
where it was shown that generative networks can approximate distribu-
tions arising from the composition of Barron functions Barron (1993).
It remains unclear, however, which distributions can be obtained in
such a manner. More recently, it was established Lu and Lu (2020)
that for every given target distribution (of finite third moment) and
source distribution, both defined on Rd, there exists a ReLU network
whose gradient pushes forward the source distribution to an arbitrarily
accurate—in terms of Wasserstein distance—approximation of the tar-
get distribution. The aspect of dimensionality increase was addressed in
Bailey and Telgarsky (2018), where it is shown that a uniform univariate
source distribution can be transformed, by a ReLU network, into a uni-
form target distribution of arbitrary dimension through a space-filling
approach. Besides, Bailey and Telgarsky (2018) also demonstrates how
a univariate Gaussian target distribution can be obtained from a univari-
ate uniform source distribution and vice versa. In a general context, the
problem of optimal transport Villani (2008) between source and target
distributions on spaces of different dimensions was studied in McCann
and Pass (2020).

The approximation of distributions through generative networks
is inherently related to function approximation and hence to the ex-
pressivity of neural networks. A classical result along those lines is
the universal approximation theorem Cybenko (1989); Hornik (1991),
which states that single-hidden-layer neural networks with sigmoidal
activation function can approximate continuous functions on compact
subsets of Rn arbitrarily well. More recent developments in this area
are concerned with the influence of network depth on attainable ap-
proximation quality Telgarsky (2016); Daubechies et al. (2019); Eldan
and Shamir (2016). A theory establishing the fundamental limits of
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deep neural network expressivity is provided in Bölcskei et al. (2019);
Elbrächter et al. (2021).

The aim of the present chapter is to develop a universal approxi-
mation result for generative neural networks. Specifically, we show
that every target distribution supported on a bounded subset of Rd can
be approximated arbitrarily well in terms of Wasserstein distance by
pushing forward a 1-dimensional uniform source distribution through a
ReLU network. The result is constructive in the sense of explicitly iden-
tifying the corresponding generative network. Concretely, we proceed
in two steps. Given a target distribution, we find the histogram distribu-
tion that best approximates it—for a given histogram resolution—in
Wasserstein distance. This histogram distribution is then realized by
a ReLU network driven by a uniform univariate input distribution.
The construction of this ReLU network exploits a space-filling prop-
erty, vastly generalizing the one discovered in Bailey and Telgarsky
(2018); Perekrestenko et al. (2020). The main conceptual insight of
the present chapter is that generating arbitrary d-dimensional target
distributions from a 1-dimensional uniform distribution through a deep
ReLU network does not come at a cost—in terms of approximation
error measured in Wasserstein distance—relative to generating the tar-
get distribution from d independent random variables through, e.g.,
(for arbitrary d) the normalizing flows method Rezende and Mohamed
(2015) and (for d = 2) the Box-Muller method Box and Muller (1958).
We emphasize that the generating network has to be deep, in fact its
depth has to go to infinity to obtain the same Wasserstein-distance error
as a construction from d independent random variables would yield.
Finally, we find that, for histogram target distributions, the number of
bits needed to encode the corresponding generative network equals the
fundamental limit for encoding probability distributions as dictated by
quantization theory Graf and Luschgy (2000).
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2.2. DEFINITIONS AND NOTATION

We start by introducing general notation.
log stands for the logarithm to base 2. For n1, n2 ∈ N, the set

of integers in the range [n1, n2] is designated as [n1 : n2]. For x =
(x1, x2, . . . , xd) ∈ Rd, we denote the vector obtained by retaining
the first t, t ≤ d, entries by x[1:t] := (x1, x2, . . . , xt) ∈ Rt. U(∆)
stands for the uniform distribution on the interval ∆; when ∆ = [0, 1],
we simply write U . Given a probability density function (pdf) p, we
denote its push-forward under the function f as f#p. δx refers to
the Dirac delta distribution. Bd stands for the Borel σ-algebra on Rd,
i.e., the smallest σ-algebra on Rd that contains all open subsets of Rd.
For a vector b ∈ Rd, we let ‖b‖∞ := maxi |bi|, similarly we write
‖A‖∞ := maxi,j |Ai,j | for the matrix A ∈ Rm×n. The Cartesian
product of the intervals Ii, i ∈ [1 : d], is denoted by×d

i=1 Ii =
I1×I2×· · ·×Id. Finally, χI stands for the indicator function on
the set I.

We proceed to define ReLU neural networks.

Definition 20. Let L ∈ N and N0, N1, . . . , NL ∈ N. A ReLU neural
network Φ is a map Φ : RN0 → RNL given by

Φ =


W1, L = 1
W2 ◦ ρ ◦W1, L = 2
WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3,

where, for ` ∈ [1 :L], W` : RN`−1 → RN` ,W`(x) := A`x + b` are
the associated affine transformations with (weight) matrices A` ∈
RN`×N`−1 and (bias) vectors b` ∈ RN` , and the ReLU activation
function ρ : R → R, ρ(x) := max(x, 0) acts component-wise, i.e.,
ρ(x1, . . . , xN ) := (ρ(x1), . . . , ρ(xN )). We denote byNNd,d′ the set of
all ReLU networks with input dimension N0 = d and output dimension
NL = d′. Moreover, we define the following quantities related to the
notion of size of the network Φ:
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• the connectivityM(Φ) is the total number of nonzero weights, i.e.,
entries in the matrices A`, ` ∈ [1 :L], and the vectors b`, ` ∈ [1 :L]

• depth L(Φ) := L

• widthW(Φ) := max`=0,...,LN`

The distance between probability measures will be quantified
through Wasserstein distance defined as follows.

Definition 21. Let µ and ν be probability measures on (Rd,Bd). A
coupling between µ and ν is defined as a probability measure π on
(Rd × Rd,B2d) such that π(A1 × Rd) = µ(A1) and π(Rd × A2) =
ν(A2), for all A1, A2 ∈ Bd. Let

∏
(µ, ν) be the set of all couplings

between µ and ν. The Wasserstein distance between µ and ν is defined
as

W (µ, ν) := inf
π∈
∏

(µ,ν)

∫
Rd×Rd

‖x− y‖dπ(x,y),

where ‖ · ‖ denotes Euclidean norm.

We will frequently use the concept of histogram distributions for-
malized as follows.

Definition 22. A random variable X is said to have a general his-
togram distribution of resolution n on [0, 1], denoted as X ∼ G[0, 1]1n,
if for some t0, t1, . . . , tn ∈ R such that 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1
and if ti = ti+1, then ti+2 6= ti, ∀i ∈ [0 : (n− 2)], its pdf is given by

p(x) =
n−1∑
k=0

wkκ[tk,tk+1](x), with
n−1∑
k=0

wkd(tk, tk+1) = 1, (2.1)

and wk > 0 for all k ∈ [0 : (n− 1)]. Here,

κ[tk,tk+1](x) =
{
χ[tk,tk+1](x), if tk < tk+1

δx−tk , if tk = tk+1
,
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and

d(tk, tk+1) =
{
tk+1 − tk, if tk < tk+1

1, if tk = tk+1
. (2.2)

General histogram distributions allow for bins of arbitrary size and
for point singularities, see the right-hand plot in Figure 2.4. We will,
however, mostly be concerned with histogram distributions of uniform
tile size, defined as follows.

Definition 23. A random vector X = (X1, X2, . . . , Xd)> is said to
have a histogram distribution of resolution n on the d-dimensional unit
cube, denoted as X ∼ E [0, 1]dn, if its pdf is given by

pX(x) =
∑

k

wkχck(x), with
∑

k

wk = nd,

and wk > 0 for all vectors k = (i1, i2, . . . , id) ∈ [0 : (n − 1)]d,
referred to as index vectors, and ck = [i1/n, (i1 + 1)/n]× [i2/n, (i2 +
1)/n]× · · · × [id/n, (id + 1)/n].

Example histogram distributions in the 1- and 2-dimensional case,
respectively, are depicted in Figs. 2.1 and 2.2. Throughout the chapter,
to indicate that the random vector X with distribution pX(x) satisfies
X ∼ E [0, 1]dn, we shall frequently also write pX(x) ∈ E [0, 1]dn.

Remark 10. For ease of exposition, in Definitions 22 and 23, we let
the intervals [tk, tk+1] and the cubes ck, respectively, be closed, thus
allowing the breakpoints to belong to different intervals/cubes. While
this comes without loss of generality, for concreteness, it is understood
that the value of the pdf at a breakpoint is given by the average across
the intervals/cubes containing the breakpoint.

2.3. SAWTOOTH FUNCTIONS

As mentioned above, our universal generative network construction
is based on a new space-filling property of ReLU networks, vastly
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generalizing the one discovered in Bailey and Telgarsky (2018);
Perekrestenko et al. (2020). At the heart of this idea are higher-order
sawtooth functions obtained as follows. Consider the sawtooth function
g : R→ [0, 1],

g(x) =


2x, if x ∈ [0, 1/2),

2(1− x), if x ∈ [1/2, 1],
0, else,

let g1(x) = g(x), and define the sawtooth function of order s as the
s-fold composition of g with itself according to

gs := g ◦ g ◦ · · · ◦ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

, s ≥ 2.

Figure 2.3 depicts the sawtooth functions of orders 1, 2, and 3. Next,
we note that g can be realized by a 2-layer ReLU network Φg ∈ NN1,1
of connectivityM(Φg) = 8 and depth L(Φg) = 2 according to Φg =
W2 ◦ ρ ◦W1 = g with

W1(x) =

2
4
2

x −
0

2
2

, W2(x) =
(
1 −1 1

)x1
x2
x3

.

127



The sth-order sawtooth function gs can hence be realized by a
ReLU network Φsg ∈ NN1,1 of connectivity M(Φsg) = 11s −
3 and depth L(Φsg) = s + 1 according to Φsg = W2 ◦ ρ ◦
Wg ◦ ρ ◦ · · · ◦Wg ◦ ρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s−1

◦W1 = gs with

Wg(x) =

2 −2 2
4 −4 4
2 −2 2

x1
x2
x3

−
0

2
2

.
We close this section with an important technical ingredient of the

generalized space-filling idea presented in Section 2.5.

Lemma 20. Let f(x) be a continuous function on [0, 1], with f(0) = 0.
Then, for all s ∈ N,

f(gs(x)) =
2s−1−1∑
k=0

f
(
g(2s−1x− k)

)
, (2.3)

and for all k ∈ [0 : (2s−1 − 1)],

supp
(
f
(
g(2s−1x− k)

))
=
(

k

2s−1 ,
k + 1
2s−1

)
. (2.4)

Proof. We first note that the sawtooth functions gs(x) satisfy Telgarsky
(2016)

gs(x) =
2s−1−1∑
k=0

g(2s−1x− k),

with g(2s−1x−k) supported on
(

k
2s−1 ,

k+1
2s−1

)
. As f(0) = 0, the support

of f(g(2s−1x−k)) coincides with that of g(2s−1x−k), which in turn
yields (2.4). To establish (2.3), we note that the supports of g(2s−1x−k)
are pairwise disjoint across k and hence

f(gs(x)) = f

( 2s−1−1∑
k=0

g(2s−1x− k)
)

=
2s−1−1∑
k=0

f
(
g(2s−1x− k)

)
.
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Fig. 2.3: Sawtooth functions

2.4. RELU NETWORKS GENERATE
HISTOGRAM DISTRIBUTIONS

This section establishes a systematic connection between ReLU net-
works and histogram distributions. Specifically, we show that the push-
forward of a uniform distribution under a piecewise linear function
results in a histogram distribution. We also identify, for a given his-
togram distribution, the piecewise linear function generating it under
pushforward of a uniform distribution. Combined with the insight that
ReLU networks realize piecewise linear functions, the desired connec-
tion is established.

We start with an auxiliary result.

Lemma 21. Let a, b ∈ R, a < b,∆ = [a, b], and let h(x) = mx + s,
for x ∈ R, with m ∈ R, s ∈ R. Then, Q = h#U(∆) is uniformly
distributed on [ma+ s,mb+ s], for m > 0, and on [mb+ s,ma+ s],
for m < 0. For m = 0, the pdf of Q is given by δ·−s.

Proof. We start with the casem ∈ R\{0}. The pdf of the pushforward
of a random variable with pdf p(x) under the function f(x) is given by

q(y) = p(f−1(y))
∣∣∣∣ ddy f−1(y)

∣∣∣∣ .
Particularized to f−1(y) = h−1(y) = y−s

m and p(x) = 1
b−aχ∆(x),
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this yields

q(y) =
{

1
m(b−a) , if y ∈ [ma+ s,mb+ s]
0, otherwise,

for m > 0, and

q(y) =
{

1
m(a−b) , if y ∈ [mb+ s,ma+ s]
0, otherwise,

form < 0. Finally, if m = 0, then the entire interval [a, b] is mapped to
the point y = s and the corresponding pdf is given by q(y) = δy−s.

We next show that the pushforward of a uniform distribution under a
piecewise linear function results in a (general) histogram distribution.

Theorem 14. For every piecewise linear continuous function f : R→
R, such that f(x) ∈ [0, 1],∀x ∈ [0, 1], and f(0) = 0, f(1) = 1, there
exists an n so that f#U ∼ G[0, 1]1n.

Proof. We split the domain of f into t ∈ N pairwise disjoint intervals
Ii = [ai, bi], i ∈ [0 : (t− 1)], each of which f is linear on, specifically
f(x) = mix+ si, x ∈ Ii. Using the law of total probability and the
chain rule, the pdf of q = f#U can accordingly be represented as

q(y) =
t−1∑
j=0

q(y|u ∈ Ij)P(u ∈ Ij). (2.5)

As U is uniform, it is also uniform conditional on being in a given
interval Ij . By Lemma 21 it therefore follows that q(y|u ∈ Ij) can be
written as

q(y|u ∈ Ij) =


χRj (y)
|Rj | , if mj 6= 0,

δy−sj , if mj = 0,

where Rj = [mjaj + sj ,mjbj + sj ] if mj > 0, and Rj =
[mjbj + sj ,mjaj + sj ] if mj < 0. Noting that by continuity of f and
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the boundary conditions f(0) = 0, f(1) = 1, we have
⋃
j Rj = [0, 1],

it follows that q(y) in (2.5) corresponds to a general histogram distribu-
tion according to (2.1) with n = t and

wj =


P(u∈Ij)
|Rj | , if mj 6= 0,

P(u ∈ Ij), if mj = 0.

We will also need the converse to the result just established, in partic-
ular a constructive version thereof explicitly identifying the piecewise
linear function that leads to a given general histogram distribution
under pushforward of a uniform distribution on the interval [0, 1].

Theorem 15. Let p(x) be the pdf of X ∼ G[0, 1]1n with weights wk,
k ∈ [0 : (n − 1)], and breakpoints 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1, and
set b0 = 0, bi =

∑i−1
k=0 wk d(tk, tk+1), i ∈ [1 :n], where

d(tk, tk+1) =
{
tk+1 − tk, if tk < tk+1

1, if tk = tk+1
.

Further, define ai, i ∈ [0 : (n− 1)], as follows: If t0 = t1, then a0 = 0
and a1 = 1

w1
. If t0 6= t1, then a0 = 1

w0
. For k ∈ [1 : (n− 2)], if tk =

tk+1, then ak = − 1
wk−1

and ak+1 = 1
wk+1

, and, if tk−1 6= tk 6= tk+1,
then ak = 1

wk
− 1
wk−1

. Finally, if tn−1 6= 1, then an−1 = 1
wn−1

− 1
wn−2

.
Then,

f(x) =
n−1∑
i=0

aiρ(x− bi) (2.6)

is the piecewise linear function satisfying f#U = p.

Proof. Let Ii := [bi, bi+1], i ∈ [0 : (n − 1)]. Then,
⋃
i∈[0:(n−1)] Ii =

[0, 1] and, for all i ∈ [0 : (n − 1)], the function f(x) in (2.6) is linear
on Ii with slope given by

i∑
j=0

aj =
{

1/wi, if ti 6= ti+1

0, if ti = ti+1
.
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Next, note that under f(x) the interval Ii is mapped to the interval
[ti, ti+1] if ti 6= ti+1 and to the singleton {ti} if ti = ti+1. The proof
is finalized upon using P(u ∈ Ii) = bi+1 − bi to conclude that (cf.
the proof of Theorem 14) P(u ∈ Ii)/|(1/wi)(bi+1 − bi)| = wi, for
ti 6= ti+1, and P(u ∈ Ii) = bi+1 − bi = wi d(ti, ti+1) = wi in the
case ti = ti+1.

An example of a piecewise linear function and the corresponding
general histogram distribution according to Theorems 14 and 15 is
provided in Figure 2.4. Theorems 14 and 15 are of independent interest
as they allow to conclude that ReLU networks, by virtue of always
realizing piecewise linear functions, produce general histogram distri-
butions when pushing forward uniform distributions. In the remainder
of the chapter, we shall, however, work with histogram distributions
E [0, 1]dn only, in particular for d = 1, in which case Theorem 15 takes
on a simpler form spelled out next.

Corollary 3. Let p(x) be the pdf of X ∼ E [0, 1]1n with weights wk,
k ∈ [0 :n], and let a0 = 1

w0
, ai = 1

wi
− 1

wi−1
, i ∈ [1 : (n− 1)], b0 = 0,

bi = 1
n

∑i−1
k=0 wk, i ∈ [1 : n]. Then, p = f#U with the piecewise

linear function

f(x) =
n−1∑
i=0

aiρ(x− bi).

We shall often need the explicit form of f(x) in Corollary 3 on its
intervals of linearity [b`, b`+1]. A direct calculation reveals that

f(x) = x

w`
−
∑`−1
i=0 wi
nw`

+ `

n
, x ∈ [b`, b`+1].
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Fig. 2.4: A piecewise linear function f (left) and the corresponding
general histogram distribution f#U (right).

2.5. INCREASING DISTRIBUTION
DIMENSIONALITY

This section is devoted to the aspect of distribution dimensionality
increase through deep ReLU networks. Specifically, for a given random
vector X ∼ E [0, 1]dn with (histogram) distribution pX(x) of resolution
n, we construct a piecewise linear map M : [0, 1]→ [0, 1]d such that
the pushforwardM#U approximates pX(x) arbitrarily well. The main
ingredient of our construction is a vast generalization of the space-
filling property of sawtooth functions discovered in Perekrestenko
et al. (2020). Informally speaking, the novel space-filling property
we describe allows to completely fill the d-dimensional target space
according to a prescribed target histogram distribution by transporting
probability mass from the 1-dimensional uniform distribution U to
d-dimensional space.

We first develop some intuition behind this construction. Specifically,
we consider the 2-dimensional case and visualize the idea of approxi-
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mating a 2-dimensional target distribution through pushforward of U
by the sawtooth functions gs(x) (depicted in Figure 2.3) as painting the
curve gs(x) with probability mass taken from U . The geodesic distance
traveled by the brush distributing probability mass along gs(x) goes
to infinity according to 2s as s→∞. This follows by noting that the
number of teeth is 2s and for s→∞, the length of the individual teeth
(in fact their halves) approaches 1. Therefore, as s → ∞ the square
[0, 1]2 will be filled with paint completely. Moreover, as x traverses
from 0 to 1, the speed at which probability mass is allocated to the
marginal dimensions, i.e., along the x1-and x2-axes, is constant. To
see this, simply note that along the x2-axis the speed of the brush is
given by the derivative of gs(x), which by virtue of gs(x) consisting
of piecewise linear segments, is constant. Likewise, as the inverse of
a linear function is again a linear function, the brush moves with con-
stant speed along the x1-axis as well. This guarantees that the resulting
2-dimensional probability distribution along with its marginals and
conditional distributions are all uniform. The rate at which the joint
distribution approaches a 2-dimensional uniform distribution can be
quantified in terms of Wasserstein distance by defining the transport
map M : x→ (x, gs(x)) and noting that W (M#U,U([0, 1]2)) ≤

√
2

2s
Bailey and Telgarsky (2018). What is noteworthy here is that the map
M takes probability mass from R to R2 in a space-filling fashion, i.e.,
we get a dimensionality increase as s→∞.

By adjusting the “paint plan”, this idea can now be generalized to
2-dimensional histogram target distributions that are constant with re-
spect to one of the dimensions, here, for concreteness, the x1-dimension.
Specifically, we replace gs(x) in the construction above by f(gs(x)),
where the piecewise linear function f(x) determines the paint plan
resulting in the desired weights (across the x2-axis) according to Corol-
lary 3. We refer to Figure 2.5 for an illustration of the idea. While the
outer function f(x) determines how much time the paint brush spends
in a given interval along the x2-axis, the inner function gs(x) takes
care of filling the unit square as s→∞. The larger the slope of f(x)
on a given interval along the x2-axis, the less time the brush spends in
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that interval and the smaller the amount of probability mass allocated
to the interval. Concretely, by Corollary 3 the amount of probability
mass deposited in a given interval is inversely proportional to the slope
of f(x) on that interval.

Finally, consider the 2-dimensional histogram distribution
pX1,X2(x1, x2) ∈ E [0, 1]2n and note that it can be represented as fol-
lows

pX1,X2(x1, x2) =
∑
k1,k2

wk1,k2χck1,k2
(x1, x2)

=
∑
k1,k2

wk1 wk2|k1χck1
(x1)χck2

(x2)

=
∑
k1

wk1χck1
(x1)

∑
k2

wk2|k1χck2
(x2)

=
n−1∑
i=0

pX1

(
x1 ∈ [i/n, (i+ 1)/n]

)
pX2|X1

(
x2|x1 ∈ [i/n, (i+ 1)/n]

)
,

(2.7)

where wk1 = 1
n

∑
k2
wk1,k2 , wk2|k1 = wk1,k2/wk1 , pX1(x1 ∈

[i/n, (i+ 1)/n]) = wiχci(x1) denotes the restriction of the marginal
histogram distribution pX1 (see Lemma 22 below) to the inter-
val [i/n, (i + 1)/n], and pX2|X1

(
x2|x1 ∈ [i/n, (i + 1)/n]

)
=∑

k2
wk2|iχck2

(x2), for each i ∈ [0 : (n − 1)], can be viewed as a
2-dimensional histogram distribution that is constant with respect to
x1, and which we assume to be generated by f (i)

X2
(gs(x)) according

to the procedure described in the previous paragraph. Now, in order
to “paint” the general 2-dimensional histogram distribution in (2.7),
we have to “squeeze” the space-filling curves f (i)

X2
(gs(x)) into the re-

spective boxes [i/n, (i+ 1)/n]× [0, 1]. This is effected by exploiting
that gs(x) is compactly supported on [0, 1] for all s ∈ N, which allows
us to realize the desired localization according to f (i)

X2
(gs(nx − i)).

The resulting localized space-filling curves are then stitched together
by adding them up according to

∑n−1
i=0 f

(i)
X2

(gs(nx − i)). Denoting
the piecewise linear function that generates the marginal histogram
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distribution pX1 according to Corollary 3 as1 fz1
X1

, i.e., fz1
X1

#U = pX1 ,

the transport map M : x→
(
fz1
X1

(x),
∑n−1
i=0 f

(i)
X2

(gs(nfz1
X1

(x)− i))
)

when applied to U generates pX1,X2 in (2.7) asymptotically in s. To
see this, we first note that the second component of M pushes for-
ward, by

∑n−1
i=0 f

(i)
X2

(gs(nx− i)), the random variable fz1
X1

#U result-
ing from the pushforward of U by the first component of M . This
allows us to read off the conditional distributions pX2|X1 . Specifically,
thanks to the individual components in

∑n−1
i=0 f

(i)
X2

(gs(nx − i)) be-
ing disjointly suppported on [i/n, (i + 1)/n], we can conclude that
the distribution of the 2-dimensional random variable M#U satis-
fies pX2|X1

(
x2|x1 ∈ [i/n, (i + 1)/n]

)
=
∑
k2
wk2|iχck2

(x2), i ∈
[0 : (n − 1)], as desired. Next, noting that the distribution pX1 of
fz1
X1

#U has components pX1

(
x1 ∈ [i/n, (i+1)/n]

)
= wiχci(x1) sup-

ported disjointly on [i/n, (i+ 1)/n], it follows from pX1,X2(x1, x2) =
pX1(x1) pX2|X1(x2|x1) that the distribution of M#U is given by

pX1,X2(x1, x2) =
n−1∑
i=0

pX1

(
x1 ∈ [i/n, (i+ 1)/n]

)
pX2|X1

(
x2|x1 ∈ [i/n, (i+ 1)/n]

)
,

which is (2.7). An example illustrating the overall construction can be
found in Figure 2.6.

We are now ready to formalize the idea just described and generalize
it to target distributions of arbitrary dimension. To this end, we start with
a technical lemma stating that all marginal and conditional distributions
of a d-dimensional histogram distribution are themselves histogram
distributions, a result that was already used implicitly in the description
of our main idea in the 2-dimensional case above.

Lemma 22. Let pX(x) be the pdf of the random vector X ∼ E [0, 1]dn.
Then, for all t ∈ [1 : (d − 1)], its marginal distributions satisfy
pX1,...,Xt(x[1:t]) ∈ E [0, 1]tn. Moreover, for all t ∈ [1 : (d − 1)] and

1The choice of the superscript z1 in fz1
X1

will become clear in Definition 24 below.
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Fig. 2.5: Generating a histogram distribution via the transport map x→
(x, f(gs(x))). Left—the function f(x), center—f(g4(x)), right—
a heatmap of the resulting histogram distribution.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

0.0 0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0.0

0.25 1 0.5 4

1 0.5 2 2

0.5 0.25 1 1

0.25 0.25 0.5 1

Fig. 2.6: Generating a 2-D histogram distribution via the transport map
x → (fz1

X1
(x),

∑3
i=0 f

(i)
X2

(g3(4fz1
X1

(x)− i))). Left—the function
f

(1)
X2

= f
(3)
X2

= fz1
X1

, center—
∑3

i=0 f
(i)
X2

(g3(4fz1
X1

(x)−i)), right—
a heatmap of the resulting histogram distribution. We took
f

(0)
X2

= f
(2)
X2

to be given by the function depicted on the left in
Figure 2.5.

z = (z1, z2, . . . , zt) ∈ [0 : (n − 1)]t, defining cz = [z1/n, (z1 +
1)/n]× [z2/n, (z2 + 1)/n]× · · · × [zt/n, (zt + 1)/n], the conditional
distributions pXt+1|X1,...,Xt(xt+1|x[1:t] ∈ cz) are independent of the
specific value of x[1:t] ∈ cz and obey pXt+1|X1,...,Xt(xt+1|x[1:t] ∈
cz) ∈ E [0, 1]1n.

Proof. The proof of the first statement follows by noting that, for all
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t ∈ [1 : (d− 1)],

pX1,...,Xt(x[1:t]) =
∫

[0,1]d−t

∑
k

wkχck(x)dxt+1dxt+2 . . . dxd

=
∑

z
wzχcz(x[1:t]),

(2.8)
where z = k[1:t] = (z1, z2, . . . , zt) with k according to Definition 23,
and wz = (1/n)d−t

∑
it+1,...,id

wk > 0. With
∑

k wk = nd from
Definition 23, we get

∑
z wz = nt−d

∑
k wk = nt, which establishes

that (2.8) constitutes a valid histogram distribution in E [0, 1]tn.
To prove the second statement, we first note that for all t ∈ [1 :

(d− 1)],

pXt+1|X1,...,Xt(xt+1|x[1:t])

=
pX1,...,Xt+1(x[1:(t+1)])
pX1,...,Xt(x[1:t])

=
∑

(z,zt+1) w(z,zt+1)χc(z,zt+1)(x[1:(t+1)])∑
z wzχcz(x[1:t])

.

Next, for a given z′ ∈ [1 : (n− 1)]t, we have

pXt+1|X1,...,Xt(xt+1|x[1:t] ∈ cz′)

=
∑
zt+1

w(z′,zt+1)χc(z′,zt+1)(x[1:(t+1)])
wz′

=
∑
zt+1

w(z′,zt+1)

wz′
χczt+1

(xt+1),

which allows us to conclude that, for all t ∈ [1 : (d − 1)] and
z = (z1, z2, . . . , zt) ∈ [0 : (n − 1)]t, the conditional distribution
pXt+1|X1,...,Xt(xt+1|x[1:t] ∈ cz) is independent of the specific value
of x[1:t] ∈ cz and, thanks to

∑
zt+1

w(z′,zt+1)

wz′
= n, belongs to the class

E [0, 1]1n.
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As a consequence of Lemma 22 it follows—from the chain
rule—that the joint distribution of a histogram distribution
pX(x) ∈ E [0, 1]dn is fully specified by the conditional distribu-
tions pXt+1|X1,...,Xt(xt+1|x[1:t] ∈ cz), t ∈ [1 : (d − 1)], z =
(z1, z2, . . . , zt) ∈ [0 : (n− 1)]t, and the marginal distribution pX1(x1).

We next define the auxiliary functions Fr and Zr needed in the
construction of the d-dimensional generalization of the 2-dimensional
transport map M : x→

(
fz1
X1

(x),
∑n−1
i=0 f

(i)
X2

(gs(nfz1
X1

(x)− i))
)

.

Definition 24. For k = [k1, . . . , kt] ∈ [0 : (n − 1)]t, t ∈ N, de-

fine ck =
[
k1
n ,

k1+1
n

]
×
[
k2
n ,

k2+1
n

]
× · · · ×

[
kt
n ,

kt+1
n

]
. Let z =

(z1, z2, . . . , zd) ∈ [0 : (n − 1)]d, set zi = z[1:(i−1)], for i ∈ [2 : d],
and fix a histogram distribution pX(x) ∈ E [0, 1]dn specified by
pzi
Xi

= pXi|X1,...,Xi−1

(
xi|x[1:(i−1)] ∈ czi

)
, for i ∈ [2 : d], and2

pz1
X1

(x1) = pX1(x1). For i ∈ [1 : d], let fzi
Xi

be the piecewise lin-
ear function that, according to Corollary 3, satisfies fzi

Xi
#U = pzi

Xi
,

and define recursively, for all s ∈ N,

Fr(x, zr+1, s) := gs
(
nfzr

Xr

(
Fr−1(x, zr, s)

)
− zr

)
, r ∈ [1 : (d− 1)],

(2.9)
with the initialization

F0(x, z1, s) := x.

Further, define the functions Zr according to

Zr(x, s) :=
∑
zr

fzr
Xr

(
Fr−1(x, zr, s)

)
, r ∈ [2 :d],

and
Z1(x, s) := fz1

X1
(x).

2Formally, z1, albeit not defined, would correspond to a 0-dimensional quantity. It is
used throughout the chapter only for notational convenience.
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With the quantities just defined, we can write

M : x→
(
fz1
X1

(x),
n−1∑
i=0

f
(i)
X2

(gs(nfz1
X1

(x)− i))
)

= (Z1(x, s), Z2(x, s)).

In the d-dimensional case, the space-filling transport map that takes
a 1-dimensional uniform distribution into a given d-dimensional his-
togram distribution, or more precisely a sufficiently accurate approxi-
mation thereof, will be seen to be given by

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s)). (2.10)

Theorem 16 below, the central result of this section, makes this formal.
The material from here on up to Theorem 16 is all preparatory and
technical. We recommend that it be skipped at first reading and suggest
to proceed to Theorem 16, in particular the intuition behind the con-
struction of (2.10) provided right after the proof of Theorem 16. We do
recommend, however, to first visit Figure 2.7, which illustrates the Fr-
functions and their role in generating the target histogram distribution.

The following lemma establishes support properties of the Fr-
functions and corresponding consequences for the Zr-functions.

Lemma 23. Let Fi, i ∈ [0 : (d − 1)], zi, i ∈ [2 :d], Zi, fzi
Xi
, i ∈ [1 :d],

be as in Definition 24. Then, for all r ∈ [2 :d], we have⋂
zr

supp
(
Fr−1(x, zr, s)

)
= ∅,

and hence for every r ∈ [2 : d], for all tr ∈ [0 : (n − 1)]r−1, it holds
that

f tr
Xr

(
Fr−1(x, tr, s)

)
> 0

=⇒ Zr(x, s) = f tr
Xr

(
Fr−1(x, tr, s)

)
, x ∈ [0, 1].
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Fig. 2.7: An example illustrating the functions Fr(x, zr+1, s) for r = 1
and r = 2. The corresponding target histogram distribu-
tion pX1,X2 (x1, x2) is visualized in subplot (i). The function
Z1(x, s) = fz1

X1
(x) = x characterizing the marginal pX1 = U is

shown in subplot (c). The functions f (0)
X2

(x) and f (1)
X2

(x) charac-
terizing p(0)

X2
and p(1)

X2
, respectively, are depicted in subplots (a)

and (b). Subplot (e) shows Z2(x, 2) and subplot (f) visualizes
F1(x, (0), 2) and F1(x, (1), 2). The functions F2(x, z3, 2) are
shown in subplot (d). Subplots (g) and (h) depict zoomed-in
versions of subplot (d). The functions F2(x, z3, 2) have disjoint
support sets, but, in contrast to F1(x, (0), 2) and F1(x, (1), 2),
their support sets are not connected. The support sets of the
colored pieces in subplot (d) match those of the respective
colored pieces in subplot (e), likewise for subplots (f) and (c).
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Proof. The proof is through induction across r. We start with the base
case r = 2. Since the vector z2 is, in fact, a scalar, we can write z2 = z1
and note that

F1(x, z2, s) = F1(x, z1, s) = gs
(
nfz1

X1
(x)− z1

)
and

Z2(x, s) =
∑
z2

fz2
X2

(
gs
(
nfz1

X1
(x)− z1

))
=

n−1∑
z1=0

f
(z1)
X2

(
gs
(
nfz1

X1
(x)− z1

))
.

Fix an arbitrary x̂ ∈ [0, 1]. Since fz1
X1

(x) ∈ [0, 1], it follows that
fz1
X1

(x̂) ∈ [t1/n, (t1 + 1)/n] for some t1 ∈ [0 : (n − 1)]. Then,(
nfz1

X1
(x̂)−z1

)
∈ [0, 1] if and only if z1 = t1. Further, as for x /∈ [0, 1],

gs(x) = 0, we have F1(x̂, z1, s) = gs
(
nfz1

X1
(x̂) − z1

)
= 0, for all

z1 6= t1. Combined with the fact that x̂ ∈ [0, 1] was chosen arbitrarily,
this implies that for every x ∈ [0, 1], there exists a t1 ∈ [0 : (n − 1)]
such that for all z1 6= t1, it holds that F1(x, z1, s) = 0. This can
equivalently be expressed as

n−1⋂
z1=0

supp
(
F1(x, z1, s)

)
= ∅. (2.11)

Next, since fz1
X2

(0) = 0, for all z1 ∈ [0 : (n− 1)], it follows from (2.11)
that, for all t1 ∈ [0 : (n− 1)],

f
(t1)
X2

(F1(x, t1, s)) > 0 =⇒Z2(x, s)

=
n−1∑
z1=0

f
(z1)
X2

(
F1(x, z1, s)

)
= f

(t1)
X2

(F1(x, t1, s)), x ∈ [0, 1].

This establishes the base case. To prove the induction step, we assume
that the statement holds for some r ∈ [2 : (d − 1)]. Then, by the
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induction assumption,⋂
zr

supp
(
Fr−1(x, zr, s)

)
= ∅,

or, equivalently, for every x ∈ [0, 1], there exists a tr ∈ [0 : (n− 1)]r−1

such that for all zr 6= tr, we have Fr−1(x, zr, s) = 0. Now, fix an
arbitrary x̂ ∈ [0, 1] together with its corresponding tr ∈ [0 : (n−1)]r−1

such that Fr−1(x̂, zr, s) = 0, for all zr 6= tr, and consider

Fr(x̂, zr+1, s)
= gs

(
nfzr

Xr

(
Fr−1(x̂, zr, s)

)
− zr

)
=
{

0, if zr 6= tr,
gs
(
nf tr

Xr

(
Fr−1(x̂, tr, s)

)
− zr

)
, if zr = tr.

(2.12)

Again, as f tr
Xr

(x) ∈ [0, 1], we can conclude that, for an arbitrarily fixed
x̂ ∈ [0, 1], there is a tr ∈ [0 : (n− 1)] such that f tr

Xr

(
Fr−1(x̂, tr, s)

)
∈

[tr/n, (tr + 1)/n]. Then,
(
nf tr

Xr

(
Fr−1(x̂, tr, s)

)
− zr

)
∈ [0, 1] if and

only if zr = tr. Thanks to gs(x) = 0, for x /∈ [0, 1], (2.12) becomes

Fr(x̂, zr+1, s)

=
{

0, if zr+1 6= tr+1,

gs
(
nf tr

Xr

(
Fr−1(x̂, tr, s)

)
− tr

)
, if zr+1 = tr+1.

=
{

0, if zr+1 6= tr+1,

Fr(x̂, tr+1, s), if zr+1 = tr+1.

Combined with the fact that x̂ ∈ [0, 1] was chosen arbitrarily, this
implies that for every x ∈ [0, 1], there exists a tr+1 ∈ [0 : (n − 1)]r
such that for all zr+1 6= tr+1, it holds that Fr(x, zr+1, s) = 0. This
can equivalently be expressed as⋂

zr+1

supp
(
Fr(x, zr+1, s)

)
= ∅. (2.13)
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Next, since fzr+1
Xr+1

(0) = 0, for all zr+1, it follows from (2.13) that, for
all tr+1 ∈ [0 : (n− 1)]r,

f
tr+1
Xr+1

(
Fr(x, tr+1, s)

)
> 0⇒Zr+1(x, s)

:=
∑
zr+1

f
zr+1
Xr+1

(
Fr(x, zr+1, s)

)
= f

tr+1
Xr+1

(
Fr(x, tr+1, s)

)
, x ∈ [0, 1].

This concludes the proof.

Before proceeding, we need to introduce further notation. Specif-
ically, let P1 = [a, b], P2 = [c, d] be intervals in [0, 1], i.e., 0 ≤ a <

b ≤ 1 and 0 ≤ c < d ≤ 1. Then, we define P := P1 � P2 according
to P = [a + c(b − a), a + d(b − a)]. Note that |P | = |P1||P2|. The
�-operation is associative in the sense of (P1�P2)�P3 = P1�(P2�P3).
We further define the function N(x, [a, b]) = a+x(b− a), x ∈ [0, 1],
which rescales [0, 1] to the interval [a, b], and note that

N(N(x, [a, b]), [c, d]) = N(x, [c, d] � [a, b]). (2.14)

We will also need the function N−(x, [a, b]) = b−x(b−a), x ∈ [0, 1],
which, like N(x, [a, b]), rescales [0, 1] to the interval [a, b], but does
so in reverse manner, i.e., by mapping x = 0 to b and x = 1 to
a. Additionally, we define the operator S([a, b]) = [1 − b, 1 − a],
for all 0 ≤ a < b ≤ 1, which maps the interval [a, b] ⊆ [0, 1] to
the interval [1 − b, 1 − a]. Note that S is cardinality-preserving, i.e.,
|S([a, b])| = (b− a) = |[a, b]|. Moreover, we have the relation

1−N(x, S([a, b])) = N−(x, [a, b]). (2.15)

The next lemma establishes that the Zr-functions indeed realize the
per-bin histogram distributions constituting the desired target histogram
distribution.

Lemma 24. Let z = (z1, z2, . . . , zd) ∈ [0 : (n − 1)]d and ∆h =[
h
2s ,

h+1
2s

]
, h ∈ [0 : (2s − 1)]. Set czi =

[
zi
n ,

zi+1
n

]
, for i ∈ [1 :d]. Let
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zi = z[1:(i−1)] and fix pX(x) ∈ E [0, 1]dn with pz1
X1

:= pX1 and pzi
Xi

:=
pXi|X1,...,Xi−1

(
xi|x[1:(i−1)] ∈ czi

)
, for i ∈ [2 : d], where pzi

Xi
∈

E [0, 1]1n, i ∈ [1 :d], has weights wzi
k , for k ∈ [0 : (n− 1)]. Let fzi

Xi
be

the piecewise linear function which, according to Corollary 3, satisfies
fzi
Xi

#U = pzi
Xi

, i ∈ [1 :d]. Define P zi
r =

[
1
n

∑r−1
k=0 w

zi
k ,

1
n

∑r
k=0 w

zi
k

]
and P zi,h

r = P zi
r �∆h, r ∈ [1 : (n−1)], and P zi

0 =
[
0, w

zi
0
n

]
, P zi,h

0 =
P zi

0 �∆h. Then, for every k ∈ [2 :d], for all zk ∈ [0 : (n− 1)]k−1 and
hk = (h1, h2, . . . , hk−1) ∈ [0 : (2s − 1)]k−1, it holds that

Zk(N(x, Tk−1), s)
= fzk

Xk
(Fk−1(N(x, Tk−1), zk, s))

= fzk
Xk

(x), for x ∈ [0, 1] and
k−1∑
i=1

hi ∈ 2N0,

and

Zk(N(x, Tk−1), s)
= fzk

Xk
(Fk−1(N(x, Tk−1), zk, s))

= fzk
Xk

(1− x), for x ∈ [0, 1] and
k−1∑
i=1

hi ∈ 2N0 + 1,

where Ti, i ∈ [1 :d], is defined recursively according to

Ti =
{
Ti−1 � P z

i , if
∑i−1
`=1 h` ∈ 2N0

Ti−1 � S(P z
i ), if

∑i−1
`=1 h` ∈ 2N0 + 1

,

for i ∈ [2 : d], and initialized by T1 = P z
0 � P z

1 , with P z
i := P zi,hi

zi

and P z
0 = [0, 1]. Moreover, |Tk| = 1

2sk pX(x[1:k] ∈ czk+1), for all
k ∈ [1 : (d− 1)].

Proof. The proof is through induction across k. We start with the
base case k = 2. Since the vectors z2 and t2 are, in fact, scalars,
we can write z2 = z1 and t2 = t1. Fix h1 ∈ [0 : (2s −
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1)], z1 ∈ [0 : (n − 1)], and note that T1 = [0, 1] � P z
1 =

P z
1 = P z1

z1
� ∆h1 =

[
1
n

∑z1−1
k=0 wz1

k ,
1
n

∑z1
k=0 w

z1
k

]
�
[
h1
2s ,

h1+1
2s

]
=[

1
n

∑z1−1
k=0 wz1

k + h1w
z1
z1

2sn , 1
n

∑z1−1
k=0 wz1

k + (h1+1)wz1
z1

2sn

]
. Further, note

that |T1| = w
z1
z1

2sn = 1
2s pX(x1 ∈ cz1). By Corollary 3, fz1

X1
(x) is linear

on P z1
z1

with slope 1
w

z1
z1

and boundary points fz1
X1

( 1
n

∑z1−1
k=0 wz1

k ) =
z1/n and fz1

X1
( 1
n

∑z1
k=0 w

z1
k ) = (z1 + 1)/n. The explicit form of

fz1
X1

(x) on P z1
z1

follows from the remark after Corollary 3 as

fz1
X1

(x) = x

wz1
z1

−
∑z1−1
i=0 wz1

i

nwz1
z1

+ z1

n
, x ∈ P z1

z1
.

Next, since N(x, T1) = 1
n

∑z1−1
k=0 wz1

k + (x+h1)wz1
z1

2sn , noting that T1 ⊂
P z1
z1

, we obtain

fz1
X1

(N(x, T1)) = x+ h1

2sn + z1

n
, x ∈ [0, 1], (2.16)

and, hence, for x ∈ [0, 1],

f
(z1)
X2

(
F1(N(x, T1), z1, s)

)
= f

(z1)
X2

(
gs
(
nfz1

X1
(N(x, T1))− z1

))
= f

(z1)
X2

(gs((x+ h1)2−s))

(a)=
2s−1−1∑
j=0

f
(z1)
X2

(g(2s−1(x+ h1)2−s − j))

=
2s−1−1∑
j=0

f
(z1)
X2

(g(x/2 + h1/2− j))

(b)= f
(z1)
X2

(g(x/2 + h1/2− bh1/2c))
(c)=
{
f

(z1)
X2

(x), if h1 ∈ 2N0,

f
(z1)
X2

(1− x), if h1 ∈ 2N0 + 1,

(2.17)
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where we used Lemma 20 in (a), the fact that g(x/2 + h1/2− j) = 0,
for all x ∈ [0, 1], for j 6= bh1/2c in (b), and h1/2 − bh1/2c = 0
for h1 ∈ 2N0 and h1/2 − bh1/2c = 1/2 for h1 ∈ 2N0 + 1 along
with g(x) = g(1 − x), for x ∈ [0, 1], in (c). Finally, as by Corol-
lary 3, f (z1)

X2
(x) > 0, for all x ∈ (0, 1], it follows from (2.17) that

f
(z1)
X2

(
F1(N(x, T1), z1, s)

)
> 0, for all x ∈ (0, 1] for h1 ∈ 2N0, and

for all x ∈ [0, 1) for h1 ∈ 2N0 + 1. Application of Lemma 23 then
yields

Z2(N(x, T1), s) = f
(z1)
X2

(
F1(N(x, T1), z1, s)

)
, (2.18)

for all x ∈ (0, 1] for h1 ∈ 2N0, and for all x ∈ [0, 1) for
h1 ∈ 2N0 + 1. To see that (2.18) holds for x = 0 and h1 ∈ 2N0, sim-
ply note that Z2(N(0, T1), s) =

∑
z1
f

(z1)
X2

(F1(N(0, T1), z1, s)) and

F1(N(0, T1), z1, s) = gs(h1/2s) = 0, which thanks to f (z1)
X2

(0) = 0
implies Z2(N(0, T1), s) = f

(z1)
X2

(F1(N(0, T1), z1, s)) = 0. The case
x = 1 and h1 ∈ 2N0 + 1 follows along the exact same lines noting
that F1(N(1, T1), z1, s) = gs((h1 + 1)/2s) = 0. This finalizes the
proof of the base case.

The proof of the induction step largely follows the arguments un-
derlying the proof of the base case. Fix k ∈ N, with k ≥ 2, and
assume that for all zk = (z1, z2, . . . , zk−1) ∈ [0 : (n − 1)]k−1 and
hk = (h1, h2, . . . , hk−1) ∈ [0 : (2s − 1)]k−1, it holds that

Zk(N(x, Tk−1), s)
= fzk

Xk
(Fk−1(N(x, Tk−1), zk, s))

= fzk
Xk

(x), for x ∈ [0, 1] and
k−1∑
i=1

hi ∈ 2N0,

and

Zk(N(x, Tk−1), s)
= fzk

Xk
(Fk−1(N(x, Tk−1), zk, s))
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= fzk
Xk

(1− x), for x ∈ [0, 1] and
k−1∑
i=1

hi ∈ 2N0 + 1,

with |Tk−1| = 1
2s(k−1) pX(x[1:(k−1)] ∈ czk). Fix

hk+1 = (h1, h2, . . . , hk) ∈ [0 : (2s − 1)]k and zk+1 =
(z1, z2, . . . , zk) ∈ [0 : (n − 1)]k. Consider Zk(N(x, Tk−1), s) =
fzk
Xk

(Fk−1(N(x, Tk−1), zk, s)) on the interval

P z
k = P zk

zk
�∆hk

=
[

1
n

zk−1∑
j=0

wzk
j +

hkw
zk
zk

2sn ,
1
n

zk−1∑
j=0

wzk
j +

(hk + 1)wzk
zk

2sn

]
.

We first note that

Tk =
{
Tk−1 � P z

k , if
∑k−1
i=1 hi ∈ 2N0

Tk−1 � S(P z
k ), if

∑k−1
i=1 hi ∈ 2N0 + 1

,

and

|Tk| =
{
|Tk−1||P z

k |, if
∑k−1
i=1 hi ∈ 2N0

|Tk−1||S(P z
k )|, if

∑k−1
i=1 hi ∈ 2N0 + 1

= |Tk−1|
wzk
zk

2sn
= 1

2s(k−1) pX(x[1:(k−1)] ∈ czk)

1
2s pXk|X1,...,Xk−1

(
xk ∈ czk |x[1:(k−1)] ∈ czk

)
= 1

2sk pX(x[1:k] ∈ czk+1).

We first provide the proof for the case
∑k−1
i=1 hi ∈ 2N0. By Corol-

lary 3, fzk
Xk

(x) is linear on P zk
zk

with slope 1/wzk
zk

and boundary points
fzk
Xk

( 1
n

∑zk−1
j=0 wzk

j ) = zk/n and fzk
Xk

( 1
n

∑zk
j=0 w

zk
j ) = (zk + 1)/n.

The explicit form of fzk
Xk

on P zk
zk

follows from the remark after Corol-
lary 3 as

fzk
Xk

(x) = x

wzk
zk

−
∑zk−1
j=0 wzk

j

nwzk
zk

+ zk
n
.
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Using N(x, Tk) = N(N(x, P z
k ), Tk−1), which is thanks to (2.14), in

the induction assumption (for
∑k−1
i=1 hi ∈ 2N0), we get

fzk
Xk

(Fk−1(N(x, Tk), zk, s))
= fzk

Xk
(Fk−1(N(N(x, P z

k ), Tk−1), zk, s))
= fzk

Xk
(N(x, P z

k ))

= x+ hk
2sn + zk

n
, x ∈ [0, 1].

(2.19)

Next, for x ∈ [0, 1], it follows from (2.9) and (2.19) that

f
zk+1
Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
= f

zk+1
Xk+1

(gs(nfzk
Xk

(Fk−1(N(x, Tk), zk, s))− zk))

= f
zk+1
Xk+1

(gs((x+ hk)2−s))

(a)=
2s−1−1∑
j=0

f
zk+1
Xk+1

(g(2s−1(x+ hk)2−s − j))

=
2s−1−1∑
j=0

f
zk+1
Xk+1

(g(x/2 + hk/2− j))

(b)= f
zk+1
Xk+1

(g(x/2 + hk/2− bhk/2c))

(c)=
{
f

zk+1
Xk+1

(x), if hk ∈ 2N0,

f
zk+1
Xk+1

(1− x), if hk ∈ 2N0 + 1,

(d)=
{
f

zk+1
Xk+1

(x), if
∑k
i=1 hi ∈ 2N0,

f
zk+1
Xk+1

(1− x), if
∑k
i=1 hi ∈ 2N0 + 1,

(2.20)

where we used Lemma 20 in (a), the fact that g(x/2 + hk/2− j) = 0,
for all x ∈ [0, 1], for j 6= bhk/2c in (b), hk/2 − bhk/2c = 0 for
hk ∈ 2N0 and hk/2 − bhk/2c = 1/2 for hk ∈ 2N0 + 1 along with
g(x) = g(1 − x), for x ∈ [0, 1], in (c), and

∑k−1
i=1 hi ∈ 2N0 in (d).

Finally, as by Corollary 3, fzk+1
Xk+1

(x) > 0, for all x ∈ (0, 1], it follows
from (2.20) that fzk+1

Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
> 0, for all x ∈ (0, 1]
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for
∑k
i=1 hi ∈ 2N0, and for all x ∈ [0, 1) for

∑k
i=1 hi ∈ 2N0 + 1.

Application of Lemma 23 then yields

Zk+1(N(x, Tk), s) = f
zk+1
Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
,

for all x ∈ (0, 1] for
∑k
i=1 hi ∈ 2N0, and for all x ∈ [0, 1) for∑k

i=1 hi ∈ 2N0 + 1. The boundary cases i) x = 0 and
∑k
i=1 hi ∈ 2N0

and ii) x = 1 and
∑k
i=1 hi ∈ 2N0 + 1 follow along the same lines as

in the base case upon noting that Fk(N(0, Tk), zk+1, s) = gs(hk/2s)
and Fk(N(1, Tk), zk+1, s) = gs((hk + 1)/2s).

We proceed to the proof for the case
∑k−1
i=1 hi ∈ 2N0 + 1. Using

(2.15) and N(x, Tk) = N(N(x, S(P z
k )), Tk−1), which is thanks to

(2.14), in the induction assumption (for
∑k−1
i=1 hi ∈ 2N0 + 1), we get

fzk
Xk

(Fk−1(N(x, Tk), zk, s))
= fzk

Xk
(Fk−1(N(N(x, S(P z

k )), Tk−1), zk, s))
= fzk

Xk
(1−N(x, S(P z

k )))
= fzk

Xk
(N−(x, P z

k ))

= hk + 1− x
2sn + zk

n
, x ∈ [0, 1].

(2.21)
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Next, for x ∈ [0, 1], it follows from (2.9) and (2.21) that

f
zk+1
Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
= f

zk+1
Xk+1

(gs(nfzk
Xk

(Fk−1(N(x, Tk), zk, s))− zk))

= f
zk+1
Xk+1

(gs((hk + 1− x)2−s))

(a)=
2s−1−1∑
j=0

f
zk+1
Xk+1

(g(2s−1(hk + 1− x)2−s − j))

=
2s−1−1∑
j=0

f
zk+1
Xk+1

(g(hk/2 + 1/2− x/2− j))

(b)= f
zk+1
Xk+1

(g(hk/2 + 1/2− x/2− bhk/2c))

(c)=
{
f

zk+1
Xk+1

(1− x), if hk ∈ 2N0,

f
zk+1
Xk+1

(x), if hk ∈ 2N0 + 1,

(d)=
{
f

zk+1
Xk+1

(x), if
∑k
i=1 hi ∈ 2N0,

f
zk+1
Xk+1

(1− x), if
∑k
i=1 hi ∈ 2N0 + 1,

(2.22)

where we used Lemma 20 in (a), the fact that g(hk/2+1/2−x/2−j) =
0, for all x ∈ [0, 1], for j 6= bhk/2c in (b), hk/2 − bhk/2c = 0 for
hk ∈ 2N0 and hk/2 − bhk/2c = 1/2 for hk ∈ 2N0 + 1 along with
g(x) = g(1− x), for x ∈ [0, 1], in (c), and

∑k−1
i=1 hi ∈ 2N0 + 1 in (d).

Finally, as by Corollary 3, fzk+1
Xk+1

(x) > 0, for all x ∈ (0, 1], it follows
from (2.22) that fzk+1

Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
> 0, for all x ∈ (0, 1]

for
∑k
i=1 hi ∈ 2N0, and for all x ∈ [0, 1) for

∑k
i=1 hi ∈ 2N0 + 1.

Application of Lemma 23 then yields

Zk+1(N(x, Tk), s) = f
zk+1
Xk+1

(
Fk(N(x, Tk), zk+1, s)

)
,

for all x ∈ (0, 1] for
∑k
i=1 hi ∈ 2N0, and for all x ∈ [0, 1) for∑k

i=1 hi ∈ 2N0 + 1. The boundary cases i) x = 0 and
∑k
i=1 hi ∈ 2N0

and ii) x = 1 and
∑k
i=1 hi ∈ 2N0 + 1 follow along the same lines as

in the base case upon noting that Fk(N(0, Tk), zk+1, s) = gs((hk +
1)/2s) and Fk(N(1, Tk), zk+1, s) = gs(hk/2s).
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This concludes the proof of the induction step and thereby the overall
proof.

We continue with a corollary to Lemma 24 complementing the
results on |Tk|, k ∈ [1 : (d− 1)], by the corresponding expression for
|Td| and specifying the range of the Zr-functions on the domain Td.

Corollary 4. Let z = (z1, z2, . . . , zd) ∈ [0 : (n − 1)]d and zi =
z[1:(i−1)]. Fix pX(x) ∈ E [0, 1]dn, and for all hd = (h1, h2, . . . , hd) ∈
[0 : (2s − 1)]d, let Tk, k ∈ [1 :d], be defined as in Lemma 24. Then, it
holds that |Td| = 1

2sd pX(x ∈ cz). Moreover, for every k ∈ [1 :d], for

all x ∈ Td, Zk(x, s) ∈
[
zk
n + hk

2sn ,
zk
n + hk+1

2sn

]
.

Proof. We first prove the statement on |Td| and start by noting that,
owing to Lemma 24,

|Td−1| =
1

2s(d−1) pX(x[1:(d−1)] ∈ czd).

With

P zd,hd
zd

= P zd
zd
�∆hd

=
[

1
n

zd−1∑
j=0

wzd
j +

hdw
zd
zd

2sn ,
1
n

zd−1∑
j=0

wzd
j +

(hd + 1)wzd
zd

2sn

]

and |P zd,hd
zd

| = |S(P zd,hd
zd

)|, we get

|Td| =
{
|Td−1||P zd,hd

zd
|, if

∑d−1
i=1 hi ∈ 2N0

|Td−1||S(P zd,hd
zd

)|, if
∑d−1
i=1 hi ∈ 2N0 + 1

= 1
2s(d−1) pX(x[1:(d−1)] ∈ czd)

wzd
zd

2sn

= 1
2s(d−1) pX(x[1:(d−1)] ∈ czd)

1
2s pXd|X1,...,Xd−1

(
xd ∈ czd |x[1:(d−1)] ∈ czd

)
= 1

2sd pX(x ∈ cz).
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This establishes the first statement.
To prove the second statement, we first note that, for k = 1, by

(2.16), Z1(x, s) ∈
[
z1
n + h1

2sn ,
z1
n + h1+1

2sn

]
, for all x ∈ T1. Next, for

every k ∈ [2 :d], for all Tk−1, by Lemma 24, it holds that

Zk(N(x, Tk−1), s) =
{
fzk
Xk

(x),
∑k−1
i=1 hi ∈ 2N0

fzk
Xk

(1− x),
∑k−1
i=1 hi ∈ 2N0 + 1

,

for all x ∈ [0, 1]. Now, arbitrarily fix zk ∈ [0 : (n − 1)], hk ∈ [0 :
(2s − 1)] and consider

Tk =
{
Tk−1 � P z

k , if
∑k−1
i=1 hi ∈ 2N0

Tk−1 � S(P z
k ), if

∑k−1
i=1 hi ∈ 2N0 + 1

with P z
k = P zk,hk

zk
. With (2.14), this yields, for all x ∈ [0, 1],

Zk(N(x, Tk), s)

=
{
Zk(N(N(x, P z

k ), Tk−1), s),
∑k−1
i=1 hi ∈ 2N0

Zk(N(N(x, S(P z
k )), Tk−1), s),

∑k−1
i=1 hi ∈ 2N0 + 1

=
{
fzk
Xk

(N(x, P z
k )),

∑k−1
i=1 hi ∈ 2N0

fzk
Xk

(1−N(x, S(P z
k ))),

∑k−1
i=1 hi ∈ 2N0 + 1

.

Now, by (2.19), it follows for
∑k−1
i=1 hi ∈ 2N0 that

fzk
Xk

(N(x, P z
k ))

= x+ hk
2sn + zk

n
∈
[
zk
n

+ hk
2sn,

zk
n

+ hk + 1
2sn

]
, for x ∈ [0, 1],

and analogously, for
∑k−1
i=1 hi ∈ 2N0 + 1, by (2.21),

fzk
Xk

(1−N(x, S(P z
k )))

= fzk
Xk

(N−(x, P z
k ))

= hk + 1− x
2sn + zk

n
∈
[
zk
n

+ hk
2sn,

zk
n

+ hk + 1
2sn

]
, for x ∈ [0, 1].
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We have hence shown that, for all k ∈ [1 : d], Zk(x, s) ∈
[
zk
n +

hk
2sn ,

zk
n + hk+1

2sn

]
, for all x ∈ Tk. The proof is completed upon noting

that Td ⊆ Tk, for all k ∈ [1 :d].

We are now ready to state the main result of this section, namely that
the piecewise linear map

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s))

transports a 1-dimensional uniform distribution in a space-filling man-
ner to an arbitrarily close approximation of any high-dimensional his-
togram distribution.

Theorem 16. For every distribution pX(x) ∈ E [0, 1]dn, the corre-
sponding transport map

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s)) (2.23)

satisfies

W (M#U, pX) ≤
√
d

n2s .

Proof. Let z = (z1, z2, . . . , zd) ∈ [0 : (n − 1)]d, ∆h =
[
h
2s ,

h+1
2s

]
with h ∈ [0 : (2s − 1)], and h = (h1, h2, . . . , hd) ∈ [0 : (2s − 1)]d.
With czi = [ zin ,

zi+1
n ], i ∈ [1 : d], let ch

z =×d

i=1(czi � ∆hi). Let
Td be defined as in Lemma 24. By Corollary 4, M : Td → ch

z and
|Td| = 1

2sd pX(x ∈ cz). We hence get (M#U)(x ∈ ch
z ) = |Td| =

1
2sd pX(x ∈ cz). This establishes that the mapM transports probability

mass 1
2sd pX(x ∈ cz) to the cube ch

z of volume
( 1
n2s
)d

, for all z. As pX
is a histogram distribution, it is uniformly distributed on its constituent
cubes cz, which, in turn, implies that the amount of probability mass
it exhibits on each subcube ch

z of cz is given by 1
2sd pX(x ∈ cz). The

mapM , when pushing forward U , therefore transports exactly the right
amount of probability mass to each cube ch

z for a coupling between pX
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and M#U to exist. Combining this with ‖x−y‖ ≤
√
d

n2s , for all points
x,y in a d-dimensional cube of side length n−12−s, it follows from
Definition 21 that

W (M#U, pX) ≤
√
d

n2s .

Theorem 16 was proven in Perekrestenko et al. (2020) for d = 2.
We remark that a space-filling approach for increasing distribution di-
mensionality was first described by Bailey and Telgarsky in Bailey and
Telgarsky (2018). Specifically, the construction in Bailey and Telgarsky
(2018) generates uniform target distributions of arbitrary dimension
based on the transport map M : x → (x, gs(x), g2s(x), . . . ). The gen-
eralization introduced in this chapter is capable of producing arbitrary
histogram target distributions through space-filling transport maps that
build on several key ideas, the first two of which are best illustrated
by revisiting the 2-dimensional case with corresponding transport map
M : x→ (fz1

X1
(x),

∑n−1
i=0 f

(i)
X2

(gs(nfz1
X1

(x)− i))). First, M in its sec-

ond component composes the function
∑n−1
i=0 f

(i)
X2

(gs(nx − i)) with
its first component fz1

X1
(x). Formally, this idea is also present in the

Bailey-Telgarsky map, where the second component gs(x) can be in-
terpreted as a trivial composition of gs(·) with the first component, x.
It is, in fact, this composition idea that leads to the space-filling prop-
erty. Second,

∑n−1
i=0 f

(i)
X2

(gs(nfz1
X1

(x)− i)) yields localization through

squeezing and shifting of the f (i)
X2

. This idea allows to realize different
marginal distributions for different horizontal histogram bins (see the
rightmost subplot in Fig. 2.6) and is not present in the Bailey-Telgarsky
construction as, owing to the target distribution being uniform, there is
no concept of histogram distributions. Taken together the two ideas just
described allow to generate arbitrary marginal histogram distributions
pX2|X1

(
x2|x1), which are then combined—through the chain rule—

with the histogram distribution pX1(x1) to the overall target histogram
distribution pX1,X2(x1, x2).

A further idea underlying our transport map construction becomes
transparent in the general d-dimensional case. Specifically, in taking
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the space-filling idea to higher dimensions, we note that in the Bailey-
Telgarsky map M : x → (x, gs(x), g2s(x), . . . ), the third component,
g2s(x) can actually be interpreted as a composition of gs(·) with the
second component gs(x), simply as gs(gs(x)) = g2s(x). Likewise, as
already noted in the previous paragraph, the second component, gs(x),
is a composition of gs(·) with the first component, x. This insight
informs the recursive definition of the Fr-functions according to (2.9),
which, modulo the shaping by the localized fzr

Xr
-functions, can be

seen to exhibit this gs-composition property as well. The Zr(x, s)-
functions constituting the components of our transport map (2.23) are
then obtained by applying the localization idea as described above for
the 2-dimensional case. There is, however, an important difference
between localization in the 2-dimensional case and in the general d-
dimensional case. This is best seen by inspecting the 3-dimensional
case illustrated in Figure 2.7. Specifically, whereas in the 2-dimensional
case the Fr-functions are contiguously supported (see subplot (f)), in
the 3-dimensional case, as illustrated in subplot (d), the support sets are
disjointed, but exhibit a periodic pattern. Going to higher dimensions
yields a fractal-like support set picture. We emphasize that this support
set structure is a consequence of interlacing the self-compositions of the
gs-functions with the localized per-bin histogram-distribution shaping
functions fzr

Xr
.

We finally note that the transport map M in Theorem 16 can be in-
terpreted as a transport operator in the sense of optimal transport theory
Peyré and Cuturi (2019); Villani (2008), with the source distribution
being 1-dimensional and the target-distribution d-dimensional. What
is special here is that the transport operator acts between spaces of
different dimensions and does so in a space-filling manner McCann
and Pass (2020).
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2.6. REALIZATION OF TRANSPORT MAP
THROUGH QUANTIZED NETWORKS

This section is concerned with the realization of the transport map
M by ReLU networks. In particular, we shall consider networks with
quantized weights, for three reasons. First, in practice network weights
can not be stored as real numbers on a computer, but rather have to
be encoded with a finite number of bits. Second, we want to convince
ourselves that the space-filling property of the transport map, brittle as
it seems, is, in fact, not dependent on the network weights being real
numbers. Third, we will be able to develop a relationship, presented
in Section 2.9, between the complexity of target distributions and the
complexity of the ReLU networks realizing the corresponding transport
maps. Specifically, complexity will be quantified through the number
of bits needed to encode the distribution and the network, respectively,
to within a prescribed accuracy.

We will see that ReLU networks with quantized weights generate
histogram distributions with quantized weights, referred to as quan-
tized histogram distributions in the following. In Section 2.7, we will
then study the approximation of general distributions by quantized
histogram distributions. Finally, in Section 2.8, we put everything to-
gether and characterize the error incurred when approximating arbitrary
target distributions by the transportation of a 1-dimensional uniform
distribution through a ReLU network with quantized weights.

Before proceeding, we need to define quantized histogram distribu-
tions and quantized networks. We start with scalar distributions.

Definition 25. Let δ = 1/A, for some A ∈ N. A random variable X
is said to have a δ-quantized histogram distribution of resolution n on
[0, 1], denoted as X ∼ Ẽδ[0, 1]1n, if its pdf is given by

p(x) =
n−1∑
k=0

wkχ[k/n,(k+1)/n](x),
n−1∑
k=0

wk = n,

wk = δmk > 0, mk ∈ N, for all k ∈ [0 : (n− 1)].
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We extend this definition to random vectors by saying that a random
vector has a δ-quantized histogram distribution, if all its conditional (1-
dimensional) distributions pzi

Xi
are δ-quantized histogram distributions.

Definition 26. Let δ = 1/A, for some A ∈ N. A random vector
X = (X1, X2, . . . , Xd)> is said to have a δ-quantized histogram
distribution of resolution n on the d-dimensional unit cube, denoted
as X ∼ Ẽδ[0, 1]dn, if X ∼ E [0, 1]dn with pzi

Xi
∈ Ẽδ[0, 1]1n, for every

i ∈ [1 :d], for all zi.

We continue with the definition of quantized ReLU networks.

Definition 27. For δ > 0, we say that a ReLU network is δ-quantized
if each of its weights is of one of the following two types. A weight w
is of Type 1 if w ∈ (δZ ∩ [−1/δ, 1/δ]) and of Type 2 if 1

w ∈ (δZ ∩
[−1/δ, 1/δ]).

Formally, the goal of this section is to find, for fixed pX ∈ Ẽδ[0, 1]dn,
a quantized ReLU network Φ such that Φ#U approximates pX to
within a prescribed accuracy. To this end, we start with an auxiliary
lemma, which constructs the building blocks of such networks.

Lemma 25. For every δ-quantized pX ∈ Ẽδ[0, 1]dn with d > 1, the
map Mr : Rnr+r → Rnr+1+r+1, r ∈ [0 : (d− 1)], defined as

M0 : F0(x, z1, s)

→
(
F1(x, z1

2, s), F1(x, z2
2, s), . . . , F1(x, zn2 , s), Z1(x, s)

)
,

and, for r ∈ [1 : (d− 1)],

Mr :
(
Fr(x, z1

r+1, s), Fr(x, z2
r+1, s), . . . , Fr(x, zn

r

r+1, s), Z1(x, s),

Z2(x, s), . . . , Zr(x, s)
)

→
(
Fr+1(x, z1

r+2, s), Fr+1(x, z2
r+2, s), . . . , Fr+1(x, zn

r+1

r+2 , s),

Z1(x, s), Z2(x, s), . . . , Zr+1(x, s)
)
,
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is realizable through a ∆-quantized ReLU network ΨMr ∈
NNnr+r,nr+1+r+1 with M(ΨMr ) = O(nr+2 + snr+1) and
L(ΨMr ) = s+ 3. Here, ∆ = δ

n and the vectors zir ∈ [0 : (n− 1)]r−1,
i ∈ [1 :nr−1], are in natural order3 with respect to i.

Proof. We start with auxiliary results needed in the proof and then
proceed to establish the statement for the cases r = 0 and r ≥ 1
separately. According to Corollary 3, for every k ∈ [1 : d], for all
zk ∈ [0 : (n− 1)]k−1, fzk

Xk
(x) can be realized through a ReLU network

Φzk : R→ R ∈ NN1,1 given by

Φzk : x→ 1
w0
ρ(x) +

n−1∑
i=1

( 1
wi
− 1
wi−1

)
ρ
(
x− 1

n

i−1∑
j=0

wj

)
,

and satisfying M(Φzk) ≤ 4n − 2, L(Φzk) = 2. For ∆ = δ
n , the

network Φzk is ∆-quantized with the weights 1
w0

, 1
wi

, and 1
wi−1

of

Type 2, and the weights 1
n

∑i−1
j=0 wj of Type 1. The networks Φzk

i (x)
implementing

(
nfzk

Xk
(x)−i

)
are inNN1,1 and haveM(Φzk

i ) ≤ 4n−1,
L(Φzk

i ) = 2, with their weights all of either Type 1 or Type 2 w.r.t.
∆-quantization. The network Ψs

g(x) realizing gs(x) (see Section 2.3)
is in NN1,1 withM(Ψs

g) = 11s − 3, L(Ψs
g) = s + 1, and with all

its weights in {−4,−2,−1, 1, 2, 4}, which are, again, of Type 1 w.r.t.
∆-quantization. It follows from (Elbrächter et al., 2021, Lemma II.3)
that the networks Ψzk

i,s = Ψs
g(Φ

zk
i ) are in NN1,1 with M(Ψzk

i,s) ≤
8n+ 22s− 8 and L(Ψzk

i,s) = s+ 3.
We are now ready to prove the statement for r = 0. Here, M0 :R→

Rn+1 with

M0 : F0(x, z1, s)

→
(
F1(x, z1

2, s), F1(x, z2
2, s), . . . , F1(x, zn2 , s), Z1(x, s)

)
,

3e.g., for n = 2, r = 3, the order is z1
3 = (0, 0), z2

3 = (0, 1), z3
3 = (1, 0), z4

3 =
(1, 1).
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or equivalently

M0 : x→
(
gs
(
nfz1

X1
(x)
)
, gs
(
nfz1

X1
(x)− 1

)
, . . . ,

gs
(
nfz1

X1
(x)− (n− 1)

)
, fz1
X1

(x)
)
.

The networks Ψz1
i,s realizing the components gs

(
nfz1

X1
(x)− i

)
, i ∈ [0 :

(n− 1)], of the mapping M0 all have depth s+ 3, whereas the network
Φz1 implementing the last component of M0, fz1

X1
(x), has depth 2.

As we want to apply (Elbrächter et al., 2021, Lemma II.5), we hence
need to augment Φz1 to depth s + 3. This is effected by exploiting
that Φz1(x) ≥ 0, ∀x ∈ R, which allows us to retain the input-output
relation realized by the network while amending it by multiplications
by 1 (acting as affine transformations) interlaced by applications of
ρ for an overall depth of s+ 3. This leads to the augmented network
Φ̃z1 = ρ ◦ . . . ◦ ρ ◦ Φz1 , withM(Φ̃z1) ≤ 4n+s−1, L(Φ̃z1) = s+3.
Application of (Elbrächter et al., 2021, Lemma II.5) now allows us
to conclude that the network ΨM0 =

(
Ψz1

0,s,Ψ
z1
1,s, . . . ,Ψ

z1
n−1,s, Φ̃z1

)
realizing the map M0 is in NN1,1 and satisfiesM(ΨM0) = O(n2 +
sn), L(ΨM0) = s+ 3. This proves the statement for r = 0.

We proceed to the proof for the case r ≥ 1. To this end, we use (2.9)
to write the map Mr : Rnr+r → Rnr+1+r+1, for r ∈ [1 : (d− 1)], as
follows

Mr : (y1, y2, . . . , ynr+r)

→
([
gs

(
nf

zir+1
Xr+1

(yi)− k
)]

(i,k)∈([1:nr],[0:(n−1)])
, ynr+1,

. . . , ynr+r,
∑

i∈[1:nr]

f
zir+1
Xr+1

(yi)
)
,

where the notation [h(i, k)](i,k)∈([1:nr],[0:(n−1)]) desig-
nates the sequence h(i, k) with (i, k) ranging over
([1 : nr], [0 : (n − 1)]), with ordering according to(

[h(1, k)]k∈[0:(n−1)], [h(2, k)]k∈[0:(n−1)], . . . , [h(nr, k)]k∈[0:(n−1)]

)
.
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As discussed above, each gs
(
nf

zir+1
Xr+1

(yi) − k
)

can be realized

by a network Ψzir+1
k,s ∈ NN1,1 with M(Ψzir+1

k,s ) ≤ 8n + 22s − 8,

L(Ψzir+1
k,s ) = s + 3. We will also need the identity networks

Φs+3
id (x) = (ρ◦· · ·◦ρ)(x) = x, for all x ≥ 0, withM(Φs+3

id ) = s+3,
L(Φs+3

id ) = s + 3. Finally, by (Elbrächter et al., 2021, Lemma II.6),

there exists a network ΨΣ realizing the function
∑
i∈[1:nr] f

zir+1
Xr+1

(yi),
and with ΨΣ ∈ NNnr,1, M(ΨΣ) ≤ 4nr+1, L(ΨΣ) = 2. We shall
also need the extension of ΨΣ to a network of depth s+ 3 according
to Ψ̃Σ = ρ ◦ . . . ◦ ρ ◦ ΨΣ with M(Ψ̃Σ) ≤ 4nr+1 + s + 1,
L(Ψ̃Σ) = s+ 3. The proof is now concluded by realizing the map Mr

as a ReLU network ΨMr

according to

ΨMr

(y1, y2, . . . , ynr+r)

=
([

Ψzir+1
k,s (yi)

]
(i,k)∈([1:nr],[0:(n−1)])

,Φs+3
id (ynr+1), . . . ,

Φs+3
id (ynr+r), Ψ̃Σ(y1, . . . , ynr )

)
.

Application of (Elbrächter et al., 2021, Lemma II.5) now yields ΨMr ∈
NNnr+r,nr+1+r+1 withM(ΨMr ) = O(nr+2 + snr+1), L(ΨMr ) =
s+ 3.

The next result characterizes the ReLU networks realizing the trans-
port map and quantifies their size in terms of connectivity and depth.

Lemma 26. For every pX ∈ Ẽδ[0, 1]dn with d > 1, the corresponding
transport map

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s))

can be realized through a ∆-quantized ReLU network ΨM ∈ NN1,d
withM(ΨM ) = O(nd + snd−1), L(ΨM ) = (s + 3)d − s − 1, and
∆ = δ

n .
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Proof. Consider the map M ′ := Md−2 ◦Md−1 ◦ · · · ◦M0,

M ′ : x→
(
Fd−1(x, z1

d, s), Fd−1(x, z2
d, s),

. . . , Fd−1(x, zn
d−1

d , s), Z1(x, s), Z2(x, s), . . . , Zd−1(x, s)
)
,

where the Mr, r ∈ [0 : (d − 2)], are as defined in Lemma 25.
Since by Lemma 25, Mr, r ∈ [0 : (d − 2)], can be realized by
a network with connectivity O(nr+2 + snr+1) and depth s + 3,
it follows from (Elbrächter et al., 2021, Lemma II.3) that the map
M ′ can be implemented by a network Ψ′ ∈ NN1,nd−1+d−1, with
M(Ψ′) = O(nd + snd−1), L(Ψ′) = (s + 3)(d − 1); here, we used∑d−2
k=0O(nk+2 + snk+1) = O(nd + snd−1). Next, consider the map

S :
(
y1, . . . , ynd−1+d−1

)
→
(
ρ(ynd−1+1), ρ(ynd−1+2), . . . ,

ρ(ynd−1+d−1), ρ(
∑

i∈[1:nd−1]

yi)
)
,

and note that by (Elbrächter et al., 2021, Lemma II.5), there exists a
network ΨS ∈ NNnd−1+d−1,d withM(ΨS) ≤ nd−1 + 2d − 1, and
L(ΨS) = 2 realizing S. The proof is concluded by noting that, thanks
to (Elbrächter et al., 2021, Lemma II.3), the desired map M = S ◦M ′
is realized by the network ΨM := ΨS(Ψ′(x)), ΨM ∈ NN1,d with
M(ΨM ) = O(nd+snd−1), L(Ψ′) = (s+3)d−s−1. Moreover, the
weights of ΨM are either of Type 1 or Type 2 w.r.t. ∆-quantization.

We are now ready to state the main result of this section, namely that
for every quantized histogram distribution pX and every ε > 0, there
exists a quantized ReLU network Ψ satisfying W (Ψ#U, pX) ≤ ε. In
particular, we also quantify the dependence of ε on the resolution n
and the dimension d of pX as well as the depth of the network Ψ.

Theorem 17. For every δ-quantized pX ∈ Ẽδ[0, 1]dn with d > 1, there
exists a ∆-quantized ReLU network Ψ ∈ NN1,d withM(Ψ) = O(nd+
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snd−1), L(Ψ) = (s+ 3)d− s− 1, and ∆ = δ
n , such that

W (Ψ#U, pX) ≤
√
d

n2s . (2.24)

Proof. By Lemma 26, for every pX ∈ Ẽδ[0, 1]dn with d > 1, the
corresponding transport map

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s))

can be realized through a ∆-quantized ReLU network ΨM ∈ NN1,d
withM(ΨM ) = O(nd + snd−1), L(ΨM ) = (s + 3)d − s − 1, and
∆ = δ

n . Moreover, as Ẽδ[0, 1]dn ⊂ E [0, 1]dn, it follows from Theorem
16 that

W (ΨM#U, pX) ≤
√
d

n2s .

We note that for fixed histogram resolution n, the upper bound on
the approximation error (2.24) decays exponentially in s and hence in
network depth L(Ψ). In particular, choosing s ∼ n, guarantees that the
error in Theorem 17 decays exponentially in n while the connectivity
of the network is in O(nd); this behavior is asymptotically optimal as
the number of parameters in Ẽδ[0, 1]dn is of the same order.

2.7. APPROXIMATION OF ARBITRARY
DISTRIBUTIONS ON [0, 1]D BY
QUANTIZED HISTOGRAM
DISTRIBUTIONS

This section is concerned with the approximation of arbitrary distribu-
tions ν supported on [0, 1]d by δ-quantized histogram distributions of
resolution n as defined in the previous section.

Define the k-dimensional subcube cik = [i1/n, (i1 + 1)/n] ×
[i2/n, (i2 + 1)/n] × · · · × [ik/n, (ik + 1)/n], where ik =
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(i1, i2, . . . , ik) ∈ [0 : (n− 1)]k, and its corner point

pik =
(
i1
n
,
i2
n
, · · · , ik

n

)
.

Next, we discretize the domain [0, 1]d into the subcubes cid and char-
acterize the amount of probability mass ν assigns to the individual
subcubes. First, set

mid := ν(cid).

Then, for k ∈ [1 : (d − 1)], we define the projections Pk : Rd →
Rk, (x1, . . . , xk, . . . , xd) 7→ (x1, . . . , xk) and the corresponding k-
dimensional marginals νk := Pk#ν with weights

mik := νk(cik).

It will also be useful to define conditional masses according to ni1 =
mi1 and, for k ∈ [2 :d], for all4 ik−1 with mik−1 6= 0,

nik := mik
mik−1

.

For mik−1 = 0, we can, in principle, set the conditional masses arbi-
trarily, but, for concreteness, we choose

nik := 1
n
.

Now that we have defined the massesmik and the conditional masses
nik for the distribution ν, we can proceed to derive the masses m̃ik and
ñik of the corresponding δ-quantized histogram distribution. Denote
the index of the subcube with the highest (original) mass in the first
coordinate as5

i
∗(i0)
1 := arg max

i1∈[0:(n−1)]
mi1 . (2.25)

4Throughout, we use the symbols i1 and i1 interchangeably.
5Formally, i0, albeit not defined, would correspond to a 0-dimensional quantity. It is

used throughout the chapter only for notational consistency.
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If there are multiple subcubes with the same maximal mass, simply
pick one of them (it does not matter which one). Now, for k = 1 and
i1 6= i

∗(i0)
1 , we choose the quantized masses as follows,

m̃i1 := ñi1 :=
{
δd 1
δmi1e, if mi1 > 0

δ, if mi1 = 0
,

and for i1 = i
∗(i0)
1 ,

m̃
i
∗(i0)
1

:= ñ
i
∗(i0)
1

:= 1−
∑

i1 6=i
∗(i0)
1

m̃i1 .

Note that with this definition, the quantized masses m̃i1 are always
nonzero for i1 6= i

∗(i0)
1 , even in subcubes where the original masses

mi1 are equal to zero. We will later verify that this is also the case for
i1 = i

∗(i0)
1 whenever δ < 1

n(n−1) . For k ≥ 2, we similarly borrow
mass from the subcube with maximum mass, and we do so in each
coordinate individually. To this end, for each k ∈ [2 :d], we set for all
ik−1,

i
∗(ik−1)
k := arg max

ik∈[0:(n−1)]
mik .

As in the assignment (2.25) for the first coordinate, if there are multiple
such values, any of them will do. To define the quantized conditional
masses, we set for each ik−1 ∈ [0 : (n− 1)]k−1 and each ik 6= i

∗(ik−1)
k ,

ñik :=

δd 1
δnike = δ

⌈
1
δ

mik
mik−1

⌉
, if mik > 0

δ, if mik = 0
,

as long as mik−1 > 0. If mik−1 = 0, we let

ñik := δ
⌈1
δ
nik

⌉
= δ
⌈1
δ

1
n

⌉
.

We can then define the quantized weights according to

m̃ik := m̃ik−1 ñik = ñik · · · ñi1 .
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Finally, for ik = i
∗(ik−1)
k , we set

ñ(
ik−1,i

∗(ik−1)
k

) := 1−
∑

ik 6=i
∗(ik−1)
k

ñ(ik−1,ik)

and correspondingly

m̃(
ik−1,i

∗(ik−1)
k

) := m̃ik−1 ñ
(

ik−1,i
∗(ik−1)
k

)
= ñ(

ik−1,i
∗(ik−1)
k

) · · · ñi1 .

We now check that the quantized weights verify the following prop-
erties:

1. Correct marginals:
n∑

ik=1
m̃(ik−1,ik)

=
∑

ik 6=i
∗(ik−1)
k

m̃(ik−1,ik) + m̃(
ik−1,i

∗(ik−1)
k

)
=

∑
ik 6=i

∗(ik−1)
k

m̃ik−1 ñ(ik−1,ik) + m̃ik−1 ñ
(

ik−1,i
∗(ik−1)
k

)

= m̃ik−1

 ∑
ik 6=i

∗(ik−1)
k

ñ(ik−1,ik) +

1−
∑

ik 6=i
∗(ik−1)
k

ñ(ik−1,ik)




= m̃ik−1 .

2. If δ < 1
n(n−1) , then all quantized masses are positive. To this end,

we first note that

n(
ik−1,i

∗(ik−1)
k

) =

m(
ik−1,i

∗(ik−1)
k

)
mik−1

≥ 1
n
.
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Since for ik 6= i
∗(ik−1)
k , we have by definition

ñik − nik ≤ δ,
it follows that

ñ(
ik−1,i

∗(ik−1)
k

) = 1−
∑

ik 6=i
∗(ik−1)
k

ñ(ik−1,ik)

≥ 1−
∑

ik 6=i
∗(ik−1)
k

(
n(ik−1,ik) + δ

)
= n(

ik−1,i
∗(ik−1)
k

) − (n− 1)δ

>
1
n
− n− 1
n(n− 1) = 0.

We next formalize the procedure for going from the original masses
mik to the quantized masses m̃ik by characterizing a transport map
effecting this transition.

Lemma 27. Let k ∈ [1 :d], ν a distribution supported on [0, 1]k and
with masses mik in the subcubes cik and conditional masses nik , all
as specified above. Let the quantized masses m̃ik and the conditional
quantized masses ñik also be given as above. Then, for all ik, we have

m̃ik

= mik +
k∑

k′=1
χ

[0:(n−1)]\
{
i
∗(i
k′−1)

k′

}(ik′) Υ̃(i, k, k′ + 1)

(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

−
k∑

k′=1
χ{

i
∗(i
k′−1)

k′

}(ik′)Υ(i, k, k′ + 1)
(
nik′ − ñik′

)
Υη(i, k′ − 1, 1),

(2.26)
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where

Υ(i, b, a) =
{
nib · · · nia , if b ≥ a
1, else

,

Υ̃(i, b, a) =
{
ñib · · · ñia , if b ≥ a
1, else

,

and

Υη(i, b, a) =
{
ηib(ib) · · · ηia(ia), if b ≥ a
1, else

,

with

ηik(ik) :=
{
nik , if ik 6= i

∗(ik−1)
k

ñik , if ik = i
∗(ik−1)
k

.

The proof of Lemma 27 is provided in the appendix.

We are now ready to state the main result of this section. Specifically,
we establish an upper bound on the Wasserstein distance between a
given (arbitrary) distribution ν supported on [0, 1]d, for any d ∈ N, and
the corresponding δ-quantized histogram distribution of resolution n
obtained based on the procedure described above.

Theorem 18. Let d ∈ N. For every distribution ν supported on [0, 1]d,
there exists a δ-quantized histogram distribution µ of resolution n such
that

W (µ, ν) ≤ 2
√
d

n
+ d(d+ 1)

2 (n− 1)δ.

Proof. The proof proceeds in three steps as follows.

1. For each id ∈ [0 : (n− 1)]d, we redistribute the mass mid = ν(cid)
to a point mass concentrated in the corner point pid .

2. We transport the masses mid according to the procedure described
above to result in the masses m̃id , still located at pid .
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3. For each id ∈ [0 : (n− 1)]d, we spread out the mass m̃id uniformly
across the subcube indexed by id.

Step 1. We define the distribution

ν′ =
∑

id∈[0:(n−1)]d
midδpid

and note that transporting ν to ν′ incurs transportation cost

W (ν, ν′) ≤
∑
id

mid

√(
1
n

)2
+ · · ·+

(
1
n

)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
maximum distance in each subcube

=
∑
id

mid

√
d

n

=
√
d

n
.

(2.27)

Step 2. To redistribute the masses from the original values mid to
the quantized values m̃id , we proceed coordinate by coordinate.
Specifically, in the k-th coordinate, we carry out two (sets of) trans-
portations. The first one moves, for fixed i1, . . . , ik−1, ik+1, . . . , id,
mass from the point p

(i1,...,ik−1,i
∗(ik−1)
k

,ik+1,...,id)
to the points

p(i1,...,ik−1,ik,ik+1,...,id), for all ik 6= i
∗(ik−1)
k , and does this for all

tuples i1, . . . , ik−1, ik+1, . . . , id. The second set of transportations
reconfigures masses in the coordinates [1 : (k − 1)] so as to obtain the
correct marginals in coordinate k. These reconfigurations moreover
preserve the marginals in coordinates [1 : (k − 1)]. We make all this
precise through the following claim, proved below after Step 3 has
been presented.

Claim: Reconfiguring the masses between the corner points such that
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the mass in the point pid is given by

mid

+
k∑

k′=1
χ

[0:(n−1)]\
{
i
∗(i
k′−1)

k′

}(ik′)


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)


Υ̃(i, k, k′ + 1)
(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

−
k∑

k′=1
χ{

i
∗(i
k′−1)

k′

}(ik′) Υ(i, d, k′ + 1)
(
nik′ − ñik′

)
Υη(i, k′ − 1, 1),

where

m(
i1,...,i

∗(i
k′−1)

k′
,ik+1,...,id

) :=
∑

ik′+1,...,ik

m(
i1,...,i

∗(i
k′−1)

k′
,ik′+1,...,id

),
yields the correct marginal masses m̃ik′ in all coordinates k′ ∈ [1 :
k] and comes at a Wasserstein cost of at most k(n − 1)δ, i.e., the
Wasserstein distance between the configuration of masses before the
moves and the configuration after the moves is at most k(n−1)δ. There
is a slight complication when m(

i1,...,i
∗(i
k′−1)

k′

) = 0 as in this case the

fraction in (2.28) is technically undefined. However, analogously to
the definition of the nik in the case of zero-masses in the discussion
preceding this theorem, we take

m(
i1,...,i

∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)
 :=

(
1
n

)d−k
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when m(
i1,...,i

∗(i
k′−1)

k′

) = 0. In either case, we have

∑
ik+1,...,id


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)
 = 1.

We note that the transport map in the Claim characterizes, at a high
level, the state of the masses at an intermediate step in the transportation,
while (2.26) describes the “final state” after all the moves have been
completed in coordinate k.

If we accept the claim and apply it for k = d in combination with
Lemma 27, it follows that the masses mid are, indeed, redistributed to
the masses m̃id . Moreover, we get that the total cost of the transporta-
tions in Step 2 effecting this redistribution is upper-bounded by

(n− 1) δ + 2 (n− 1) δ + · · ·+ d (n− 1) δ = d(d+ 1)
2 (n− 1) δ.

Step 3. The Wasserstein cost associated with spreading out the masses
m̃id uniformly across their associated subcubes follows from (2.27) as

W

(∑
id

m̃idδpid
, µ

)
≤
√
d

n
.

Using the fact that Wasserstein distance is a metric, we can put the
costs incurred in the individual steps together according to

W (µ, ν) ≤W
(
ν,
∑
id

midδpid

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Step 1

+W

(∑
id

midδpid
,
∑

id

m̃idδpid

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Step 2

+W

(∑
id

m̃idδpid
, µ

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Step 3
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≤
√
d

n
+ d(d+ 1)

2 (n− 1) δ +
√
d

n

= 2
√
d

n
+ d(d+ 1)

2 (n− 1) δ.

It remains to prove the claim.

Proof of the Claim. We proceed by induction on k and start with the
base case k = 1. The statement on the transportation cost associated
with (2.28) does not need an induction argument, rather it follows as a
byproduct of the proof by induction. Evaluating the transport map for
k = 1 yields

mid + χ[0:(n−1)]\
{
i
∗(i0)
1

}(i1)
(m(

i
∗(i0)
1 ,i2,...,id

)
m
i
∗(i0)
1

)
(m̃i1 −mi1)

− χ{
i
∗(i0)
1

}(i1)
(m(

i
∗(i0)
1 ,i2,...,id

)
m
i
∗(i0)
1

)
(mi1 − m̃i1).

Since masses are moved in the first coordinate only and (m̃i1 −mi1) ≤
δ, for i1 6= i

∗(i0)
1 , the Wasserstein cost of the overall transportation

satisfies∑
i1 6=i

∗(i0)
1

∑
i2,...,id

(m(
i
∗(i0)
1 ,i2,...,id

)
m
i
∗(i0)
1

)
(m̃i1 −mi1) ≤ (n− 1) δ.

Furthermore, we obtain the desired marginal masses in i1 as a conse-
quence of

∑
i2,...,id

(
mid +

(m(
i
∗(i0)
1 ,i2,...,id

)
m
i
∗(i0)
1

)
(m̃i1 −mi1)

)
= mi1 + (m̃i1 −mi1)
= m̃i1 .

This completes the proof of the base case.
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We proceed to establish the induction step. Assume that transporta-
tions were conducted in coordinate k according to (2.28) and that all
marginal masses up to and including coordinate k are as desired. We
consider the transport equation (2.28) in coordinate k+1, i.e., the sums
in (2.28) range from 1 to k + 1 and start by pointing out that

n(i1,...,i
∗(ik)
k+1 ,...,id)n(i1,...,i

∗(ik)
k+1 ,...,id−1) · · · n(i1,...,i

∗(ik)
k+1 ,ik+2)

=

m(i1,...,ik,i∗(ik)
k+1 ,ik+2,...,id

)
m(

i1,...,ik,i
∗(ik)
k+1

)
.

The first set of transportations (corresponding to the index k′ = k + 1
in the transport equation (2.28) evaluated for coordinate k + 1) hence
amounts to moving, for fixed i1, . . . , ik, ik+2, . . . , id, the massm(i1,...,ik,i∗(ik)

k+1 ,ik+2,...,id
)

m(
i1,...,ik,i

∗(ik)
k+1

)
(nik+1 − ñik+1

)
Υη(i, k, 1)

out of the point p(
i1,...,ik,i

∗(ik)
k+1 ,ik+2,...,id

) and redistributing it across

the points p(i1,...,ik,ik+1,ik+2,...,id), for ik+1 6= i
∗(ik)
k+1 . Note that for

ik+1 = i
∗(ik)
k+1 , the quantity

(
nik+1 − ñik+1

)
is positive by defini-

tion of ñ. These transportations are conducted for all possible tuples
i1, . . . , ik, ik+2, . . . , id. The Wasserstein cost associated with the col-
lection of these transportations satisfies

∑
i1,...,ik

∑
ik+1 6=i

∗(ik)
k+1

∑
ik+2,...,id

m(i1,...,ik,i∗(ik)
k+1 ,ik+2,...,id

)
m(

i1,...,ik,i
∗(ik)
k+1

)


(
ñik+1 − nik+1

)
Υη(i, k, 1)

=
∑

i1,...,ik

∑
ik+1 6=i

∗(ik)
k+1

(
ñik+1 − nik+1

)
Υη(i, k, 1)

≤ (n− 1) δ
∑

i1,...,ik

Υη(i, k, 1)

173



≤ (n− 1) δ
∑

i1,...,ik

Υ(i, k, 1)

= (n− 1) δ,

where the last inequality follows because ηik(ik) = ñik exactly when
ik = i

∗(ik−1)
k , in which case we have ñik ≤ nik . The second set of

transportations reconfigures the masses in the coordinates k′ ≤ k in
order to obtain correct marginals in the (k + 1)-th coordinate. To this
end, we first note that, for each k′ ≤ k, for all ik′ , the following identity
holds

m(
i1,...,i

∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)


=


m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
independent of ik+1


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sums to 1 in ik+1

,

as long as m(
i1,...,i

∗(i
k′−1)

k′
,ik+2,...,id

) 6= 0. If

m(
i1,...,i

∗(i
k′−1)

k′
,ik+2,...,id

) = 0, then, as usual, we set


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
 := 1

n
.

Specifically, noting that by the induction assumption transportation
according to (2.28) was carried out in coordinate k, we would like to
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reconfigure, for each k′ ≤ k, the masses
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)


(2.28)

Υ̃(i, k, k′ + 1)
(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

into
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)
ñik+1Υ̃(i, k, k′ + 1)

(
ñik′ − nik′

)
Υη(i, k′ − 1, 1).

(2.29)
This reconfiguration is possible as only one term in each (2.28) and
(2.29) depends on ik+1 and

∑
ik+1

ñik+1 = 1 =
∑
ik+1


m(

i1,...,i
∗(i
k′−1)

k′
,ik+1,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
.

Masses to be moved in this manner appear for all
i1, ..., ik′−1, ik′ , ik′+1, . . . , ik, ik+2, . . . , id with ik′ 6= i

∗(ik′−1)
k′ .

It follows by inspection of the transport map (2.28) that these
transportations do not alter the marginals for k′ ≤ k as, for given
k′, the mass moved out of the point p(

i1,...,ik′−1,i
∗(i
k′−1)

k′
,ik′+1,...,id

),

accounted for by the sum with negative sign in (2.28), equals the
total mass moved into the points p(i1,...,ik′−1,ik′ ,ik′+1,...,id), for

ik′ 6= i
∗(ik′−1)
k′ , accounted for by the sum with positive sign. These

moves hence retain the marginals for k′ ≤ k, which are correct by the
induction assumption. Before establishing that the desired marginals
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in coordinate k + 1 are obtained, we compute the Wasserstein cost
associated with the mass reconfiguration moves according to∑
i1,...,ik′−1

∑
ik′ 6=i

∗(i
k′−1)

k′

∑
ik′+1,...,ik

∑
ik+2,...,id

m(
i1,...,i

∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)
Υ̃(i, k, k′ + 1)

(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

=
∑

i1,...,ik′−1

∑
ik′ 6=i

∗(i
k′−1)

k′

∑
ik′+1,...,ik

Υ̃(i, k, k′ + 1)
(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

=
∑

i1,...,ik′−1

∑
ik′ 6=i

∗(i
k′−1)

k′

(
ñik′ − nik′

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤δ

Υη(i, k′ − 1, 1)

≤ (n− 1)δ
∑

i1,...,ik′−1

Υη(i, k′ − 1, 1)

≤ (n− 1)δ
∑

i1,...,ik′−1

Υ(i, k′ − 1, 1)

= (n− 1)δ.

We must carry this out for all k′ ∈ [1 :k], which results in a Wasserstein
cost of k(n − 1)δ for the reconfigurations. Altogether, we have a
Wasserstein cost of

(k + 1)(n− 1)δ

incurred by the moves corresponding to coordinate k + 1.
Next, using ñik+1Υ̃(i, k, k′ + 1) = Υ̃(i, k + 1, k′ + 1), it follows
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that the updated mass in the point pid is given by

mid +
k+1∑
k′=1

χ
[0:(n−1)]\

{
i
∗(i
k′−1)

k′

}(ik′)


m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)


Υ̃(i, k + 1, k′ + 1)
(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

−
k+1∑
k′=1

χ{
i
∗(i
k′−1)

k′

}(ik′) Υ(i, d, k′ + 1)
(
nik′ − ñik′

)
Υη(i, k′ − 1, 1).

Finally, we need to check that the marginals in the (k+1)-th coordinate
are, indeed, given by m̃ik+1 . This is accomplished by noting that owing
to Lemma 27, we have

∑
ik+2,...,id

[
mid +

k+1∑
k′=1

χ
[0:(n−1)]\

{
i
∗(i
k′−1)

k′

}(ik′)
m(

i1,...,i
∗(i
k′−1)

k′
,ik+2,...,id

)
m(

i1,...,i
∗(i
k′−1)

k′

)
Υ̃(i, k + 1, k′ + 1)

(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)

−
k+1∑
k′=1

χ{
i
∗(i
k′−1)

k′

}(ik′) Υ(i, d, k′ + 1)
(
nik′ − ñik′

)
Υη(i, k′ − 1, 1)

]
= mik+1

+
k+1∑
k′=1

χ
[0:(n−1)]\

{
i
∗(i
k′−1)

k′

}(ik′) Υ̃(i, k + 1, k′ + 1)
(
ñik′ − nik′

)
Υη(i, k′ − 1, 1)
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−
k+1∑
k′=1

χ{
i
∗(i
k′−1)

k′

}(ik′) Υ(i, k + 1, k′ + 1)
(
nik′ − ñik′

)
Υη(i, k′ − 1, 1)

= m̃ik+1 .

This concludes the proof of the induction step and hence establishes
the claim.

2.8. APPROXIMATION OF ARBITRARY
DISTRIBUTIONS ON BOUNDED
SUBSETS OF RD WITH GENERATIVE
RELU NETWORKS

In this section, we put all the pieces developed together and state the
main result of this chapter.

Theorem 19. For every distribution ν supported on [0, 1]d, there exists
a δ
n -quantized ReLU network Φ ∈ NN1,d with M(Φ) = O(nd +

snd−1) and L(Φ) = (s+ 3)d− s− 1 such that

W (Φ#U, ν) ≤
√
d

n2s + 2
√
d

n
+ d(d+ 1)

2 (n− 1)δ. (2.30)

Proof. The proof follows by application of the triangle inequality for
Wasserstein distance in combination with Theorems 17 and 18 accord-
ing to

W (Φ#U, ν) ≤W (Φ#U, µ) +W (µ, ν)

≤
√
d

n2s + 2
√
d

n
+ d(d+ 1)

2 (n− 1)δ,

where µ denotes the δ-quantized histogram distribution of resolution n
per Theorem 18.
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When the target distribution is uniform, Theorem 19 recovers (Bailey
and Telgarsky, 2018, Theorem 2.1). We can simplify the bound (2.30)
by setting δ = 1

d
√
d(d+1)n(n−1)e (which satisfies the requirement δ <

1
n(n−1) guaranteeing that all quantized weights are positive) to obtain,
for n ≥ 2,

W (Φ#U, ν) ≤
√
d

n2s + 2
√
d

n
+
√
d

2n =
√
d

n2s + 5
√
d

2n . (2.31)

The error bound in (2.31) illustrates the main conceptual insight of this
chapter, namely that generating arbitrary d-dimensional distributions
from a 1-dimensional uniform distribution by pushforward through a
deep ReLU network does not come at a cost—in terms of Wasserstein-
distance error—relative to generating the target distribution from d

independent random variables. Specifically, if we let the depth s of
the generating network go to infinity, the first term in the rightmost
expression of (2.31) will go to zero exponentially fast in s—thanks to
the space-filling property of the transport map realized by the generat-
ing network—leaving us only with the second term, which reflects the
error stemming from the histogram approximation of the distribution.
Moreover, this second term is inversely proportional to the histogram
resolution n and can thus be made arbitrarily small by letting the his-
togram resolution n approach infinity. The width of the corresponding
generating network will grow according to O(nd).

Theorem 19 applies to distributions supported on the unit cube
[0, 1]d. The extension to distributions supported on bounded subsets
of Rd is, however, fairly straightforward. Before stating this extension,
we provide a lemma that will help us deal with the scaling and shifting
of distributions.

Lemma 28. Let µ, ν be distributions on Rd and let f : Rd → Rd be
a Lipschitz-continuous mapping with Lipschitz constant Lip(f) <∞.
Then,

W (f#µ, f#ν) ≤ Lip(f) W (µ, ν).
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Proof. Let π be a coupling between µ and ν and let g : R2d →
R2d; (y1,y2) 7→ (f(y1), f(y2)). Then g#π is a coupling between µ
and ν and

W (f#µ, f#ν) ≤
∫
R2d
‖y1 − y2‖ d(g#π)(y1,y2)

=
∫
R2d
‖f(y1)− f(y2)‖ dπ(y1,y2)

≤ Lip(f)
∫
R2d
‖y1 − y2‖ dπ(y1,y2)

= Lip(f) W (µ, ν).

We are now ready to state the extension announced above.

Theorem 20. Let ν be a distribution on Rd supported on S =
α [0, 1]d + β for α > 0 and β ∈ Rd. Let g(x) = 1

α (x − β) and
δ = 1

d
√
d(d+1)n(n−1)e . Then, there exists a δ

n -quantized ReLU network

Φ ∈ NN1,d withM(Φ) = O(nd+snd−1) andL(Φ) = (s+3)d−s−1
such that

W (g−1#Φ#U, ν) ≤ α
(√

d

n2s + 5
√
d

2n

)
.

Proof. We first note that g−1 is Lipschitz with Lip(g−1) = α. The
result then follows immediately from Lemma 28 combined with (2.31)
by taking Φ ∈ NN1,d to approximate the distribution g#ν according
to Theorem 19.

We finally remark that g−1 by virtue of being an affine map can
easily be realized by a ReLU network.

2.9. COMPLEXITY OF GENERATIVE
NETWORKS

In this section, we compare the complexity of ReLU networks gener-
ating a given class of probability distributions to fundamental bounds
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on the complexity of encoding classes of probability distributions
through discrete approximations, a process commonly referred to as
quantization Graf and Luschgy (2000). Specifically, complexity will
be measured in terms of the number of bits needed to describe the
generative networks and, respectively, distributions. We begin by re-
viewing a fundamental result on the approximation of (non-singular)
distributions.

Definition 28 (Graf and Luschgy (2000)). For n ∈ N and the non-
singular distribution ν supported on [0, 1]d, we define the minimal
n-term quantization error as

Vn(ν) := inf{W (ν, µ) : |supp(µ)| ≤ n}.

The quantity Vn(ν) characterizes the approximation error—in
Wasserstein distance—incurred by the best discrete n-point approx-
imation of ν. The next result, taken from Graf and Luschgy (2000),
states that this approximation error exhibits the same asymptotics for
all (non-singular) distributions satisfying a mild moment constraint.

Theorem 21 ((Graf and Luschgy, 2000, Theorem 6.2)). Let X be
a random vector in Rd with X ∼ ν, where ν is non-singular and
supported on [0, 1]d, and E‖X‖1+δ <∞ for some δ > 0, where ‖ · ‖
is any norm on Rd. Then,

lim
n→∞

n1/dVn(ν) = C,

where C > 0 is a constant depending on d only.

Theorem 21 allows us to conclude that the best-approximating dis-
crete distribution must have at least n = O(ε−d) points for Vn(ν) ≤ ε
to hold. As Wasserstein distance is a metric, we hence have a covering
argument which says that the class of (non-singular) distributions ν sup-
ported on [0, 1]d (and satisfying the moment constraint in Theorem 21)
has metric entropy lower-bounded by d log(ε−1) bits. Although this
lower bound is very generous, we demonstrate next that it is achieved
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for quantized histogram target distributions encoded by their generating
ReLU networks.

Lemma 29. Consider the class of quantized histogram distributions
Ẽδ[0, 1]dn and let ε ∈ (0, 1/2). Then, there exists a set of δn -quantized
ReLU networks Φ(ε, ·) of cardinality 2`(ε), where `(ε) ≤ C log(ε−1),
with C a constant depending on d, δ, n, such that

sup
ν∈Ẽδ[0,1]dn

W (Φ(ε, ν)#U, ν) ≤ ε.

Proof. By Theorem 17, for every distribution ν ∈ Ẽδ[0, 1]dn, there
exists a δ

n -quantized ReLU network Φ, withM(Φ) = O(nd + snd−1)
and L(Φ) = (s+ 3)d− s− 1, such that

W (Φ#U, ν) ≤
√
d

n2s =: ε.

Note that d, n, δ are fixed and ε, as a function of s, can be made arbitrar-
ily small by taking s and hence network depth to be sufficiently large.
In particular, network depth needs to scale according to O(log(ε−1)).
The resulting network Φ will hence depend on ν and ε, indicated by
the notation Φ(ε, ν) used henceforth. Next, using δ

n ≤ 1/2, which is
by assumption, it follows from (Elbrächter et al., 2021, Proposition
VI.7) that the number of bits needed to encode Φ(ε, ν) in a uniquely
decodable fashion satisfies

`(ε) ≤ C0 (M(Φ(ε, ν)) log(M(Φ(ε, ν))) + 1) log(n/δ)
≤ C(d, δ, n) log(ε−1).

(2.32)

Remark. We note that the quantized networks considered in the
present chapter differ slightly from those in Elbrächter et al. (2021) as
here we employ two types of quantization, namely Type 1 and Type
2 (see Definition 27), while in Elbrächter et al. (2021) all weights are
encoded using Type-1 quantization. This does, however, not have an
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impact on the bound on `(ε) in (2.32), in fact, only the constant C0
changes relative to (Elbrächter et al., 2021, Proposition VI.7). More
specifically, to encode the quantized weights in the generative networks
considered here, we only need one additional bit per weight signifying
whether the weight is quantized according to Type 1 or Type 2.

Lemma 29 tells us that encoding (or quantizing in the sense of Graf
and Luschgy (2000)) the class of quantized histogram distributions
by pushing forward a scalar uniform distribution through generative
ReLU networks achieves the metric entropy limit of O(log(ε−1)) as
identified in Theorem 21. We hasten to add that a metric entropy scaling
ofO(log(ε−1)) for (quantized) histogram distributions of dimension d,
resolution n, and quantization level δ, all fixed, is what one would ex-
pect as we essentially have to encode polynomially (in n) many (quan-
tized) real numbers. For general (non-singular) distributions, which
constitute a much richer class than (quantized) histogram distributions,
we can establish an O(ε−d) (up to a multiplicative log-term) complex-
ity scaling for their corresponding generative networks, formalized as
follows.

Lemma 30. Consider the class of non-singular distributions supported
on [0, 1]d, denoted by F([0, 1]d), and let ε ∈ (0, 1/2). Then, there
exists a set of quantized ReLU networks Φ(ε, ·) of cardinality 2`(ε),
where `(ε) ≤ Cε−d log2(ε−1), with C a constant depending on d,
such that

sup
ν∈F([0,1]d)

W (Φ(ε, ν)#U, ν) ≤ ε.

Proof. By Theorem 19, for every distribution ν supported on [0, 1]d,
there exists a δ

n -quantized ReLU network Φ, withM(Φ) = O(nd +
snd−1) and L(Φ) = (s+ 3)d− s− 1, such that

W (Φ#U, ν) ≤
√
d

n2s + 2
√
d

n
+ d(d+ 1)

2 (n− 1)δ.

Setting δ = 1
n2d2 and s = log(n), we hence get

W (Φ#U, ν) ≤ 3
√
d+ 1
n

=: ε,
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for a 1
n3d2 -quantized network Φ(ε, ν), with M(Φ(ε, ν)) = O(nd).

Application of (Elbrächter et al., 2021, Proposition VI.7) al-
lows us to conclude that the number of bits needed to en-
code Φ(ε, ν) in a uniquely decodable fashion satisfies `(ε) ≤
C0 (M(Φ) log(M(Φ)) + 1) log(n3d2) ≤ C(d)ε−d log2(ε−1). We
note that C(d) scales very unfavorably in d, namely according to
dd/2. Finally, we remark that the application of (Elbrächter et al., 2021,
Proposition VI.7) requires that 1

n3d2 ≤ 1/2, which is satisfied if at least
one of n, d is strictly larger than 1.

2.10. APPENDIX

A. Proof of Lemma 27

Proof. Note first that

χ
[0:(n−1)]\

{
i
∗(i
k′−1)

k′

}(ik′) =
{

0, if ik′ = i
∗(ik′−1)
k′

1, if ik′ 6= i
∗(ik′−1)
k′

and

χ{
i
∗(i
k′−1)

k′

}(ik′) =
{

0, if ik′ 6= i
∗(ik′−1)
k′

1, if ik′ = i
∗(ik′−1)
k′

,

so for a given ik′ only one of the two χ-terms above is active. Terms
with ik′ 6= i

∗(ik′−1)
k′ correspond to subcubes to which we add mass to

get the quantized masses in the k′-th coordinate, while terms with
ik′ = i

∗(ik′−1)
k′ correspond to the subcube from which we take this extra

mass. Correspondingly, we refer to terms with ik′ 6= i
∗(ik′−1)
k′ as “+

terms”, while we designate terms with ik′ = i
∗(ik′−1)
k′ as “– terms”. By

construction,
(
ñik′ − nik′

)
≥ 0 for + terms, while

(
nik′ − ñik′

)
≥ 0

for – terms. In evaluating the sum (2.26), we consider three different
cases.
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Case 1: All terms are + terms. In this case, the sum becomes

mik +
k∑

k′=1
Υ̃(i, k, k′ + 1)

(
ñik′ − nik′

)
Υ(i, k′ − 1, 1)

= mik +
k∑

k′=1
Υ̃(i, k, k′)Υ(i, k′ − 1, 1)

−
k∑

k′=1
Υ̃(i, k, k′ + 1)Υ(i, k′, 1)

= mik −Υ(i, k, 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=mik

+ Υ̃(i, k, 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= m̃ik

+
k∑

k′=2
Υ̃(i, k, k′)Υ(i, k′ − 1, 1)

−
k−1∑
k′=1

Υ̃(i, k, k′ + 1)Υ(i, k′, 1)

= m̃ik +
k−1∑
k′=1

Υ̃(i, k, k′ + 1)Υ(i, k′, 1)

−
k−1∑
k′=1

Υ̃(i, k, k′ + 1)Υ(i, k′, 1)

= m̃ik .

Case 2: All terms are – terms. In this case, the sum is

mik −
k∑

k′=1
Υ(i, k, k′ + 1)

(
nik′ − ñik′

)
Υ̃(i, k′ − 1, 1)

= mik +
k∑

k′=1
Υ(i, k, k′ + 1)Υ̃(i, k′, 1)

−
k∑

k′=1
Υ(i, k, k′)Υ̃(i, k′ − 1, 1)
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= mik −Υ(i, k, 1) + Υ̃(i, k, 1) +
k−1∑
k′=1

Υ(i, k, k′ + 1)Υ̃(i, k′, 1)

−
k∑

k′=2
Υ(i, k, k′)Υ̃(i, k′ − 1, 1)

= m̃ik .

Case 3: There is at least one + term and one – term. Let the indices of
the + terms be given by {

k+
1 , . . . , k

+
`1

}
and those of the – terms by{

k−1 , . . . , k
−
`2

}
,

with both sets arranged in increasing order and `1 + `2 = k.
We first consider the sum of the – terms given by

`2∑
`=1

Υ(i, k, k−` + 1)
(
ni
k
−
`

− ñi
k
−
`

)
Υη(i, k−` − 1, 1) (2.33)

and establish a cancelation property of successive terms in this sum,
leaving only the border terms to be considered. Indeed, take ` such that
1 < ` < `2, with the corresponding term given by

Υ(i, k, k−` + 1)ni
k
−
`

Υη(i, k−` − 1, 1)

− Υ(i, k, k−` + 1) ñi
k
−
`

Υη(i, k−` − 1, 1).
(2.34)

Next, note that the positive part of the term corresponding to the index
`+ 1 is given by

Υ(i, k, k−`+1 + 1)ni
k
−
`+1

Υη(i, k−`+1 − 1, 1)

= Υ(i, k, k−`+1 + 1)ni
k
−
`+1

ni
k
−
`+1−1

· · · ni
k
−
`

+1
ñi
k
−
`

Υη(i, k−` − 1, 1),

(2.35)
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since all indices that lie strictly between k−` and k−`+1, if there are
any, correspond to + terms. Comparing (2.35) with (2.34) reveals that
the positive part of the term corresponding to ` + 1 cancels out the
negative part of the term for `. Similarly, the negative part of the term
corresponding to `− 1, given by

−Υ(i, k, k−`−1 + 1) ñi
k
−
`−1

Υη(i, k−`−1 − 1, 1),

cancels out the positive part of the term for index `, which is given by

Υ(i, k, k−` + 1)ni
k
−
`

Υη(i, k−` − 1, 1)

= Υ(i, k, k−` + 1)ni
k
−
`

ni
k
−
`
−1
· · · ni

k
−
`−1+1

ñi
k
−
`−1

Υη(i, k−`−1 − 1, 1).

Hence, the only contributions remaining in the sum (2.33) over all the –
terms are the negative part of the term corresponding to the index `2
and the positive part of the term for the index 1, i.e.,

`2∑
`=1

Υ(i, k, k−` + 1)
(
ni
k
−
`

− ñi
k
−
`

)
Υη(i, k−` − 1, 1)

= Υ(i, k, k−1 + 1)ni
k
−
1

Υη(i, k−1 − 1, 1)

− Υ(i, k, k−`2
+ 1) ñi

k
−
`2

Υη(i, k−`2
− 1, 1)

= Υ(i, k, k−1 + 1)ni
k
−
1

Υ(i, k−1 − 1, 1)

− Υ(i, k, k−`2
+ 1) ñi

k
−
`2

Υη(i, k−`2
− 1, 1)

= mik −Υ(i, k, k−`2
+ 1) ñi

k
−
`2

Υη(i, k−`2
− 1, 1),

since indices smaller than k−1 necessarily correspond to + terms.
We proceed to the sum over the + terms. A similar cancelation

property between consecutive terms in the sum can be established so
that we are again left with contributions from the first and the last term
only. Indeed, take ` such that 1 < ` < `1, with the corresponding term
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given by
Υ̃(i, k, k+

` + 1) ñi
k

+
`

Υη(i, k+
` − 1, 1)

− Υ̃(i, k, k+
` + 1)ni

k
+
`

Υη(i, k+
` − 1, 1).

The positive part of the term corresponding to the index `+ 1 is given
by

Υ̃(i, k, k+
`+1 + 1) ñi

k
+
`+1

Υη(i, k+
`+1 − 1, 1)

= Υ̃(i, k, k+
`+1 + 1) ñi

k
+
`+1

ñi
k

+
`+1−1

· · · ñi
k

+
`

+1
ni
k

+
`

Υη(i, k+
` − 1, 1),

since all indices that lie strictly between k+
` and k+

`+1, if there are
any, correspond to – terms. We can hence conclude, as above, that
the positive part of the term corresponding to ` + 1 cancels out the
negative part of the term for `. By the same argument, the positive
part of the term for ` is cancelled out by the negative part of the term
corresponding to `− 1. Overall, the only remaining contributions are
the negative part of the term corresponding to `1 and the positive part
of the term for the index 1, i.e.,

`1∑
`=1

Υ̃(i, k, k+
` + 1)

(
ñi
k

+
`

− ni
k

+
`

)
Υη(i, k+

` − 1, 1)

= Υ̃(i, k, 1)− Υ̃(i, k, k+
`1

+ 1)ni
k

+
`1

Υη(i, k+
`1
− 1, 1)

= m̃ik − Υ̃(i, k, k+
`1

+ 1)ni
k

+
`1

Υη(i, k+
`1
− 1, 1).

Putting pieces together, (2.26) reduces to

mik + m̃ik −mik

+ Υ(i, k, k−`2
+ 1) ñi

k
−
`2

Υη(i, k−`2
− 1, 1) (2.36)

− Υ̃(i, k, k+
`1

+ 1)ni
k

+
`1

Υη(i, k+
`1
− 1, 1).
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There are two possibilities to consider now, either k+
`1

= k or k−`2
= k.

If k+
`1

= k, then (2.36) becomes

m̃ik

+ Υ(i, k+
`1
, k−`2

+ 1) ñi
k
−
`2

Υη(i, k−`2
− 1, 1)

− ni
k

+
`1

· · · ni
k
−
`2

+1
ñi
k
−
`2

Υη(i, k−`2
− 1, 1)

= m̃ik ,

since, by definition, k−`2
is the largest index corresponding to – terms.

On the other hand, if k−`2
= k, then (2.36) reduces to

m̃ik

+ ñi
k
−
`2

· · · ñi
k

+
`1

+1
ni
k

+
`1

Υη(i, k+
`1
− 1, 1)

− Υ̃(i, k−`2
, k+
`1

+ 1)ni
k

+
`1

Υη(i, k+
`1
− 1, 1)

= m̃ik ,

since, again by definition, k+
`1

is the largest index corresponding to +
terms. This concludes the proof.
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CHAPTER 3

Publications

The majority of the results in this thesis have been published during
the course of the PhD studies. Specifically, the results in Chapter 1
appear in Elbrächter et al. (2021) and Perekrestenko et al. (2018). The
results in Chapter 2 were published in Perekrestenko et al. (2021) and
Perekrestenko et al. (2020).
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