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Abstract

We propose two deep neural network architectures

for classification of arbitrary-length electrocardiogram

(ECG) recordings and evaluate them on the atrial fibril-

lation (AF) classification data set provided by the Phy-

sioNet/CinC Challenge 2017. The first architecture is a

deep convolutional neural network (CNN) with averaging-

based feature aggregation across time. The second archi-

tecture combines convolutional layers for feature extrac-

tion with long-short term memory (LSTM) layers for tem-

poral aggregation of features. As a key ingredient of our

training procedure we introduce a simple data augmenta-

tion scheme for ECG data and demonstrate its effective-

ness in the AF classification task at hand. The second ar-

chitecture was found to outperform the first one, obtaining

an F1 score of 82.1% on the hidden challenge testing set.

1. Introduction

We consider the task of atrial fibrillation (AF) classifi-

cation from single lead electrocardiogram (ECG) record-

ings, as proposed by the PhysioNet/CinC Challenge 2017

[1]. AF occurs in 1-2% of the population, with incidence

increasing with age, and is associated with significant mor-

tality and morbidity [2]. Unfortunately, existing AF classi-

fication methods fail to unlock the potential of automated

AF classification as they suffer from poor generalization

capabilities incurred by training and/or evaluation on small

and/or carefully selected data sets.

In this paper, we propose two deep neural network archi-

tectures for classification of arbitrary-length ECG record-

ings and evaluate them on the AF classification data set

provided by the PhysioNet/CinC Challenge 2017. The

first architecture is a 24-layer convolutional neural network

(CNN) with averaging-based feature aggregation across

time. The second architecture is a convolutional recur-

rent neural network (CRNN) that combines a 24-layer

CNN with a 3-layer long-short term memory (LSTM) net-

work for temporal aggregation of features. CNNs have the

ability to extract features invariant to local spectral and

spatial/temporal variations, and have led to many break-

through results, most prominently in computer vision [3,

Chap. 9]. LSTM networks, on the other hand, were shown

to effectively capture long term temporal dependencies in

time series [3, Chap. 10]. As a key ingredient of our train-

ing procedure we introduce a simple yet effective data aug-

mentation scheme for the ECG data at hand.

Related work: Our network architectures are loosely

inspired by [4–6]. More specifically, a CRNN for poly-

phonic sound detection was proposed in [6]. Here, unlike

in AF classification where one has to infer a single label

per ECG, the input audio sequence is mapped to sequences

labels, inferring the sound events as a function of time.

Work [5] employs a CRNN for mental state classification

from electroencephalogram (EEG) data. In [4], LSTM net-

works are used for multilabel classification of diagnoses in

electronic health recordings. Shortly before finalizing this

work, we became aware of the preprint [7], which pro-

poses a deep CNN architecture for arrhythmia detection in

ECGs, but unlike in the classification problem considered

here, maps the ECG signal to a sequence of rhythm classes.

Finally, we refer to [8] for an overview over existing meth-

ods for AF classification that are not based on deep neural

networks.

2. Methods1

In this section we give a detailed description of our net-

work architectures as well as the training and evaluation

procedures used.

2.1. Network architectures

We propose two neural network architectures for ECG

classification, a CNN and a CRNN, illustrated in Fig. 2.

Both architectures consist of four parts: 1) data prepro-

cessing computing a logarithmic spectrogram of the input;

2) a stack of convolutional layers for feature extraction; 3)

aggregation of features across time by averaging and an

LSTM block in case of the CNN and the CRNN, respec-

tively; 4) a linear classifier. In the following we describe

each of the aforementioned parts in detail.

1) Logarithmic spectrogram: To preprocess the data

we compute the one-sided spectrogram of the time-domain

input ECG signal and apply a logarithmic transform. Pre-

1 Source code is available at:
https://github.com/yruffiner/ecg-classification

http://arxiv.org/abs/1710.06122v2
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Figure 1: Normalized spectrogram (left) and normalized

logarithmic spectrogram (right) of an example ECG signal.

liminary experiments showed that the logarithmic trans-

form considerably increases the classification accuracy;

Fig. 1 illustrates the effect of the logarithmic transform.

The spectrogram is computed using a Tukey window of

length 64 (corresponding to 213ms at the 300Hz sampling

rate of the challenge data and resulting in 33 effective fre-

quency bins) with shape parameter 0.25 and 50% overlap.

2) Convolutional layers: All convolutional layers first

apply a set of 5 × 5 convolutional filters, followed by

Batch-normalization and ReLU activation. The convolu-

tional layers are grouped in blocks of 4 and 6 layers for

the CNN and CRNN architecture, respectively, referred to

as ConvBlock4 and ConvBlock6. The number of channels

(feature maps) as well as the size of the feature maps re-

mains constant in all but the last layer of each ConvBlock.

The last layer applies max-pooling over 2×2 windows and

increases the number of channels. Specifically, the number

of channels at the output of the first ConvBlock is 64 and

is increased by 32 by each subsequent ConvBlock, result-

ing in 224 1-dimensional and 160 3-dimensional feature

maps (per output time step) for the CNN and CRNN, re-

spectively, at the output of the last ConvBlock fed to the

feature aggregation part 3) (see Fig. 2).

3) Feature aggregation across time: As the Con-

vBlocks process the variable-length input ECG signals in

full length, they produce variable length outputs, which

have to be aggregated across time before they can be fed

to a standard classifier (which typically requires the di-

mension of the input to be fixed). In our CNN architec-

ture, temporal aggregation is achieved simply by averag-

ing, whereas in the CRNN architecture the 3-dimensional

feature maps are first flattened and then feed to a 3-layer

bidirectional LSTM network with 200 neurons in each

layer. The (temporally) last output of the LSTM network

then serves as the aggregated feature vector.

Averaging realizes temporal smoothing of features and

may therefore not be suited to classify episodic phenom-

ena occurring only during a short time span relative to

the signal length, as in certain types AF. The LSTM net-

work, on the other hand, aggregates the features in a highly

non-linear manner across time and potentially preserves

episodic phenomena better.

4) Linear classifier: We employ a standard linear layer

with SoftMax to compute the class probabilities.
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Figure 2: The proposed CNN (left) and CRNN (right) ar-

chitecture. The tensor dimensions are given in the format

[time t× nbr. of features × nbr. of channels].

2.2. Training

For both network architectures we used the cross-

entropy loss (reweighted as to account for the class fre-

quencies) as training objective, and employed the Adam

optimizer with the default parameters recommended in

[9]. The batch size was set to 20. Furthermore, we used

dropout with probability 0.15 in all layers and early stop-

ping based on the F1 measure described in Sec. 2.3.

Training protocols: We trained the CNN end-to-end

from scratch without encountering any issues. Training

the convolutional and recurrent layers in the CRNN jointly

from scratch, on the other hand, did not lead to conver-

gence. We therefore adopted the following 3-phase proto-

col to train the CRNN. In phase 1, the LSTM block was

replaced by feature averaging across time and the convo-

lutional layers were trained together with a linear classifier

for 500 epochs. In phase 2, the feature averaging opera-

tor was swapped with the LSTM block and the recurrent



layers were trained for 100 epochs, while keeping the con-

volution layers fixed. In phase 3, the convolutional and

recurrent layers were trained jointly, reducing the learning

rate by a factor of 10 every 200 epochs.

Data augmentation: We observed severe overfitting in

preliminary experiments. This can be attributed to the fact

that number of parameters in the proposed architectures

is large compared to the size of data set used for evalua-

tion (see Sec. 2.3). It was demonstrated in [10] that data

augmentation can act as a regularizer to prevent overfit-

ting in neural networks, and also improves classification

performance in problems with imbalanced class frequen-

cies [11]. We therefore developed a simple data augmenta-

tion scheme tailored to the ECG data at hand. Specifically,

we employ two data augmentation techniques, namely

dropout bursts and random resampling.

Dropout bursts are created by selecting time instants

uniformly at random and setting the ECG signal values in

a 50ms vicinity of those time instants to 0. Dropout burst

hence model short periods of weak signal due to, e.g., bad

contact of ECG leads.

Assuming a heart rate of 80bpm for all training ECG

signals, random resampling emulates a broader range of

heart rates by uniformly resampling the ECG signals such

that the heart rate of the resampled signal is uniformly

distributed on the interval [60, 120]bpm. These emulated

heart rates may be unrealistically high or low due to the

assumption of an 80bpm heart rate independently of the

signal.

Ensembling: To exploit the entire data set at hand (re-

call that we employ early stopping which uses part of the

data set for validation) we used ensembles of 5 networks

of the same type (i.e., either CNN or CRNN) to build pro-

duction models, combining the individual predictions by

majority voting. Specifically, we partitioned—in a strati-

fied manner—the data set into 5 equally sized subsets, and,

for every network in the ensemble, used 4 of the subset for

training and the remaining subset for validation, choosing

a different subset for validation for every network.

2.3. Evaluation

We evaluated the proposed CNN and CRNN architec-

ture on the publicly available PhysioNet/CinC Challenge

2017 data set containing 8,528 single lead ECG record-

ings of length ranging from 9 to 61sec, sampled at 300Hz.

Each recording is labeled with one of the classes “normal

rhythm”, “AF rhythm”, “other rhythm”, and “noisy record-

ing” (we will henceforth use the abbreviations “N”, “A”,

“O”, and “˜”, respectively). The classification performance

was measured using the average over the class F1 scores of

the classes N, A, and O, i.e., F1,avg = 1

3

∑
c∈{N, A, O} F1,c,

where F1,c = 2#TPc/(2#TPc+ #FNc+ #FPc) (using TPc,

FPc, and FNc to denote the true positives, false positives,

Arch. metric N A O ˜ overall

CNN
acc. 88.1 83.6 66.9 77.1 81.2

F1 87.8 79.0 70.1 65.3 79.0

CRNN
acc. 89.9 77.8 69.4 71.5 82.3

F1 88.8 76.4 72.6 64.5 79.2

Table 1: Accuracies (acc.) and F1 scores (in %) for

the proposed network architectures (estimated using 5-fold

cross validation).

Arch. metric N A O ˜ overall

CNN
acc. 90.5 64.2 68.0 54.9 80.5

F1 88.3 69.9 69.1 59.6 75.8

CRNN
acc. 90.2 69.1 63.0 51.1 79.2

F1 87.4 69.9 66.5 54.9 74.6

Table 2: Accuracies (acc.) and F1 scores (in %) for the

proposed network architectures with data augmentation

deactivated (estimated using 5-fold cross validation).

and false negatives, respectively, for class c). We refer the

reader to [1] for a detailed description of the data set. We

evaluated the proposed network architectures via stratified

5-fold cross-validation. To realize early stopping, for ev-

ery fold, we split the training data into two partitions, one

for training and one for validation containing 5/6 and 1/6,

respectively, of the training data. Thus, for every fold, the

effective training set size amounted to 4/5 · 5/6 = 2/3 or

66.6% of all data available. We hence expect that an en-

semble of 5 networks yields a higher F1,avg as it exploits

all data available.

To demonstrate the effectiveness of the proposed data

augmentation scheme, we trained the CNN and CRNN ex-

actly as described in Sec. 2.2, but without data augmenta-

tion.

3. Results

Tables 1 and 2 show the class F1 scores and F1,avg (over-

all) along with the corresponding classification accuracies

for the proposed architectures with and without data aug-

mentation, respectively. The CRNN yielded a higher over-

all accuracy and slightly higher F1,avg than the CNN when

data augmentation was employed. The opposite can be

observed in the case when data augmentation was deac-

tivated. In both cases, none of the architectures has con-

sistently higher class accuracies or class F1 scores than the

other. Data augmentation is seen to considerably increase

F1,avg for both CNN and CRNN, with a slightly better im-

provement for the CRNN.

Based on these results we chose to submit an ensemble

of CRNNs to the PhysioNet/CinC Challenge 2017. This

ensemble obtained an F1,avg of 0.82 on the private chal-



lenge testing set, which corresponds to the second best

score (after rounding to two decimal places as per [1]) ob-

tained in the challenge. In terms of running time, the en-

semble on average consumed 58.1% of the computation

quota available on the challenge evaluation server.

4. Discussion

The results presented in Sec. 3 indicate that aggrega-

tion of features across time using an LSTM network is

more effective than averaging in the ECG classification

task under consideration, when data augmentation is em-

ployed. However, this has to be taken with a grain of salt

as the CRNN has more parameters, and thereby potentially

a higher model capacity, than the CNN. In addition, we

observed that phase 3 of the CRNN training protocol did

not consistently lead to an increase in F1,avg, and further

improvements might be achieved by refining the training

protocol. Furthermore, the results in Sec. 3 also show the

effectiveness of the proposed data augmentation scheme,

indicating that it captures certain real world phenomena—

at least to some extent.

We briefly comment on directions we explored in pre-

liminary experiments, but which did not lead to improve-

ments and were therefore not included in our final training

protocols. As an alternative to data augmentation we tried

to pretrain the CNN and the convolutional layers of the

CRNN on the PTB Diagnostic ECG Database [12], which

contains 549 14-lead ECG recordings of 290 subjects with

a variety of different cardiac conditions. This pretraining

procedure did not lead to improvements compared to ini-

tialization with random weights. We further explored [3,

Alg. 7.3] to incorporate the knowledge in the validation

set into a single production model, which is more effective

than ensembling from a computational and storage point of

view. In a nutshell, [3, Alg. 7.3] continues training on the

union of the training and the validation set after activation

of early stopping until the average loss on the validation set

attains the average loss on the training set obtained at the

time of activation of early stopping. However, continuing

training according [3, Alg. 7.3] led to a decrease in F1,avg

in our challenge submissions.

5. Conclusion

We developed and evaluated two deep neural network

architectures for ECG classification. In addition, we pro-

posed a simple data augmentation scheme for ECG data

and demonstrated its effectiveness. Applying our archi-

tectures to multi lead ECG data, possibly with different

pathology, as well as refining and extending the data aug-

mentation scheme, e.g., by taking the actual heart rate

into account for random resampling (instead of assuming

80bpm), are interesting directions to be explored in the fu-

ture.
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