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Chair for Mathematical Information Science

Dept. ITET & Dept. Math.

April 2019

Many thanks to D. Perekrestenko

joint work with P. Grohs, R. Gül, D. Elbrächter, G. Kutyniok, D. Perekrestenko,
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Describing the content of an image

CNNs generate sentences describing
the content of an image [Vinyals et al., 2015 ]

“Carlos Kleiber conducting the Vienna Philharmonic’s New Year’s Concert 1989.”
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Man vs. Machine 0:1

Slide credit: T. Hofmann, D-INFK, ETH Zurich



Go!

CNNs beat Go-champion Lee Se-dol [Silver et al., 2016]



Man vs. Machine 0:2

Slide credit: T. Hofmann, D-INFK, ETH Zurich



Feature extraction and classification

scattering networks

input: f =

non-linear mapping

feature vector Φ(f)

linear classifier

{
〈w,Φ(f)〉 > 0, ⇒ Gödel

〈w,Φ(f)〉 < 0, ⇒ von Neumann
output:



Why non-linear mappings?

Task: Separate two categories of data through a linear classifier

1

: 〈w, f〉 > 0

: 〈w, f〉 < 0

Φ(f) =

[
‖f‖
1

]

: 〈w,Φ(f)〉 > 0

: 〈w,Φ(f)〉 < 0

possible with w =

[
1
−1

]
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Why non-linear mappings?

Task: Separate two categories of data through a linear classifier

Φ(f) =

[
‖f‖
1

]

⇒ Φ is invariant to angular component of the data

⇒ Linear separability in feature space!
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Translation invariance

Handwritten digits from the MNIST database [LeCun & Cortes, 1998]

Feature vector should be invariant to spatial location
⇒ translation invariance



Neural networks
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Concatenation of affine mappings
and non-linearities



Neural networks

Let L,N0, N1, . . . , NL ∈ N, L ≥ 2.

Affine maps: W` = A`x+ b` : RN`−1 → RN` , ` ∈ {1, 2, . . . , L}

Network connectivity: M(Φ) – total number of non-zero
parameters in W`

Depth of network or number of layers: L(Φ) := L

Width of network: W(Φ) := max`=0,...,LN`

Maximum absolute value of weights in the network:
B(Φ) := max`=1,...,L{‖A`‖∞, ‖b`‖∞}

Non-linearity or activation function: ρ acts component-wise



Neural networks

A map Φ : RN0 → RNL given by

Φ(x) := WL(ρ (WL−1(ρ (. . . ρ (W1(x))))))

is called a neural network (NN).

Class of networks Φ : Rd → RNL with no more than L layers,
connectivity no more than M , input dimension d, output dimension
NL, and non-linearity ρ is denoted by NN ρ

L,M,d,NL
.



Commonly used non-linearities

Step-function: Simplified
model of biological neuron,
hard to train

Sigmoid: Smooth, easy to
train, vanishing gradient
problem

Hyperbolic tangent:
Smooth, easy to train,
gradient “stronger” than for
sigmoid, but still vanishing
gradient problem

Rectified Linear Unit
(ReLU): Computationally
cheap, dying ReLU problem



Course outline

This course is about the fundamental limits of deep neural
network learning.

We assume an optimal learning algorithm and access to
infinite amounts of data.

Want to understand fundamental limits in representing
functional relationships Φ(x) (learned in practice) in the form

Φ(x) = WL(ρ (WL−1(ρ (. . . ρ (W1(x))))))



The universal approximation theorem

Theorem (Cybenko, 1989, Hornik, 1991, Pinkus, 1999*)

Let d ∈ N, Ω ⊂ Rd compact, f : Ω→ R continuous, ρ : R→ R
continuous and not a polynomial, and let ε > 0. Then, there exists a
two-layer NN Φ with non-linearity ρ, such that

‖Φ− f‖∞ < ε.

* – no bound on width (could grow exponentially in ε)

Theorem (Lu et al., 2017**)

For any Lebesgue-integrable function f : Rn → R and any ε > 0,
there exists a ReLU network of width n+ 4, such that∫

Rn
|f(x)− Φ(x)| < ε.

** – no bound on depth (could grow exponentially in ε)



Approximation-theoretic results for single hidden layer

Approximation error bounds for smooth functions in terms of
no. of neurons: [Barron, 1993,1994]

Non-existence of localized approximations: [Chui et al., 1994]

Lower bounds on approximation rates: [DeVore et al., 1996]

Optimal approximation of smooth functions: [Mhaskar and
Micchelli, 1995]



Approximation-theoretic results for multiple hidden layers

Universal approximation results for general functions: [Hornik
et al., 1989, Mhaskar, 1993]

Universal approximation results for functions together with
their derivatives: [Nguyen-Thien and Tran-Cong, 1999]

Deep networks can perform better than single-hidden layer
networks for certain approximation tasks: [Chui et al., 1994]

Existence of functions which, albeit expressible through a small
3-layer network, can only be represented through very large
two-layer networks: [Eldan and Shamir, 2016]



Approximation-theoretic results for multiple hidden layers

Existence of functions that can be realized through relatively
small deep networks but require exponentially larger shallow
networks: [Cohen et al., 2016]

Deep neural networks can break the curse of dimensionality in
the approximation of the solution of certain PDEs: [Jentzen,
Schwab, Grohs et al., 2018]

Relation between M-term approximation rates of functions
that are sparse in wavelet frames and M-edge approximation
rates: [Shaham, Cloninger, and Coifman, 2018]



A systematic framework

Need for a systematic framework

Consider approximation of functions from a given function
class C, e.g., Besov spaces, modulation spaces, smooth
functions, ...

How does “complexity” of a network approximating all
elements of C to within prescribed accuracy depend on
complexity of C?



Andrey Nikolayevich Kolmogorov, 1903-1987

Main contributions

Probability theory: Established its
mathematical foundation,
Kolmogorov axioms,
Chapman-Kolmogorov equation

Statistics: Kolmogorov-Smirnov
test

Algorithmic information theory:
Kolmogorov complexity

Classical mechanics:
Kolmogorov-Arnold-Moser theorem



Main results

Deep networks provide exponential approximation accuracy
for a wide range of functions such as the squaring operation,
multiplication, polynomials, sinusoidal functions, and even
one-dimensional oscillatory textures and fractal functions.

Deep neural networks can learn optimally vastly different
function classes such as affine systems, Gabor systems, and
smooth functions.

This universality is afforded by a concurrent invariance
property of deep networks to time-shifts, scalings, and
frequency-shifts.



Outline of the course

Approximation of basic functions, namely x2, polynomials, and
sinusoids

Approximation of function classes

Quantifying approximation quality and relation to network
complexity

Affine systems

Gabor systems and Wilson systems

Oscillatory textures and the Weierstrass function

Impossibility results and the case for depth



Approximation of x2

Proposition (Squaring)

There exists a constant C > 0 such that for all ε ∈ (0, 1/2), there is
a network Φε ∈ NN∞,∞,1,1 satisfying L(Φε) ≤ C log(ε−1),
W(Φε) = 4, B(Φε) ≤ 4, Φε(0) = 0, and

‖Φε(x)− x2‖L∞([0,1]) ≤ ε.



Approximation of x2



Approximation of x2 – Proof

Consider the function g : [0, 1]→ [0, 1],

g(x) =

{
2x, if x < 1

2 ,

2(1− x), if x ≥ 1
2 ,

along with the “sawtooth” functions given by the s-fold compositions

gs := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

, s ≥ 2,

and set g0(x) := x, g1(x) := g(x).



Approximation of x2 – Proof

Let fm be the piecewise linear interpolation of f(x) = x2 with
2m + 1 uniformly spaced “knots” according to

fm

( k

2m

)
=
( k

2m

)2
, k = 0, . . . , 2m, m ∈ N0.

fm approximates f according to

‖fm(x)− x2‖L∞[0,1] ≤ 2−2m−2.



Approximation of x2 – Proof

Image credit: [Yarotsky, 2017]



Refinement of interpolation

Refine interpolation by going from fm−1 to fm through adjustment
with a sawtooth function according to

fm(x) = fm−1(x)− gm(x)

22m
.

This leads to overall representation

fm(x) = x−
m∑
s=1

gs(x)

22s
.



Approximation of x2 – Proof

g(x) = 2ρ(x)− 4ρ(x− 1/2) + 2ρ(x− 1),

gm(x) = g(gm−1(x))

gm = 2ρ(gm−1)−4ρ(gm−1−1/2)+2ρ(gm−1−1),

and since fm = ρ(fm),∀m ∈ N0, we have

fm = ρ(fm−1)− 2−2m
(

2ρ(gm−1)− 4ρ(gm−1− 1/2)+2ρ(gm−1− 1)
)
.

Image credit: [Schwab
& Zech, 2017]



Approximation of x2 – Proof

Rewriting as a composition of affine linear maps and the ReLU
nonlinearity (

gm
fm

)
= W1

(
ρ

(
W2

(
gm−1

fm−1

)))
,

and iterating yields(
gm
fm

)
= W1

(
ρ

(
W2

(
. . .

(
W1

(
ρ

(
W2

(
x
x

)))))))
.

Summary: fm realized through an NNm+1,13m,1,1 of width 4 and
with B(.) ≤ 4. Statement follows from εm = 2−2m−2 and hence
log(1/εm) = 2m+ 2.



Relation to Yarotsky, 2017

No skip connections needed.

Explicitly specified width.

Result applies to arbitrary domains.

Weights of network scale no faster than polynomial in the
size of the domain, crucial for optimality later on.



Exponential approximation accuracy

Approximating network has finite width and depth scaling
poly-log in 1/ε.

Owing to
M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1),

we have
ε ≤ 2−(M(Φ))1/p .

Finite width combined with poly-log (in 1/ε) depth yields
exponential error decay in connectivity.



Approximation of multiplication operation

Main idea: Write xy as

xy =
1

2

(
(x+ y)2 − x2 − y2

)
and realize 1

2

(
(x+ y)2 − x2 − y2

)
as a linear combination of squaring

networks.

Proposition (Multiplication operation)

There exists a constant C > 0 such that for all D ∈ R+ and

ε ∈ (0, 1/2), there is a network ΦD,ε ∈ NN∞,∞,2,1 satisfying

L(ΦD,ε) ≤ C log(dDe2ε−1), W(ΦD,ε) ≤ 12,

B(ΦD,ε) ≤ max{4, 2dDe2}, ΦD,ε(0, x) = ΦD,ε(x, 0) = 0, for all

x ∈ R, and

‖ΦD,ε(x, y)− xy‖L∞([−D,D]2) ≤ ε.



Approximation results for polynomials

Main idea: Realize arbitrary powers xk through composition of

squaring and multiplication networks and arbitrary polynomials by

taking weighted linear combinations of powers of x.

Proposition (Polynomial approximation)

There exists a constant C > 0 such that for all m ∈ N, A ∈ R+,

pm(x) =
∑m

i=0 aix
i with maxi=0,...,m |ai| = A, D ∈ R+, and

ε ∈ (0, 1/2), there is a network Φpm,D,ε ∈ NN∞,∞,1,1 satisfying

L(Φpm,D,ε) ≤ Cm(log(dAe) + log(ε−1) +m log(dDe) + log(m)),

W(Φpm,D,ε) ≤ 16, B(Φpm,D,ε) ≤ max{A, 8dDe2m−2}, and

‖Φpm,D,ε − pm‖L∞([−D,D]) ≤ ε.

In contrast to [Yarotsky, 2017] width of this network does not scale in
the degree of the polynomial.



Universal approximation

Theorem (Weierstrass approximation theorem)

Let [a, b] ⊆ R and f ∈ C([a, b]). Then, for every ε > 0, there exists a

polynomial π such that

‖f − π‖L∞([a,b]) ≤ ε.

Every continuous function on a closed interval can be
approximated to within arbitrary accuracy by a deep ReLU
network of finite width.

This yields a variant of the universal approximation theorem
for finite-width deep ReLU networks, but result is not
quantitative.



Smooth functions

Definition

For D ∈ R+, let the set SD ⊆ C∞([−D,D],R) be given by

SD =
{
f ∈ C∞([−D,D],R) : ‖f (n)(x)‖L∞([−D,D]) ≤ n!, n ∈ N0

}
Main idea: Use Chebyshev interpolation combined with the
polynomial approximation network.

Proposition (Smooth functions)

There exist a constant C > 0 and a polynomial π such that for all

D ∈ R+, f ∈ SD, and ε ∈ (0, 1/2), there is a network

Ψf,ε ∈ NN∞,∞,1,1 satisfying L(Ψf,ε) ≤ CdDe(log(ε−1))2,

W(Ψf,ε) ≤ 23, B(Ψf,ε) ≤ max{1/D, dDe}π(ε−1), and

‖Ψf,ε − f‖L∞([−D,D]) ≤ ε.



Approximation results for sinusoidal functions

Main idea: Taylor series approximation of one period and periodic
extension through “sawtooth” function.

Theorem (Cosine approximation)

There exists a constant C > 0 such that for every a,D ∈ R+,

ε ∈ (0, 1/2), there is a network Ψa,D,ε ∈ NN∞,∞,1,1 satisfying

L(Ψa,D,ε) ≤ C((log(1/ε))2 + log(daDe)), W(Ψa,D,ε) ≤ 16,

B(Ψa,D,ε) ≤ C, and

‖Ψa,D,ε − cos(a · )‖L∞([−D,D]) ≤ ε.



Approximation of cos(ax) – Proof

Thanks to the Taylor theorem with remainder in Lagrange form
and with Nε := d2π2e log(2/ε)e, we have, for all x ∈ [0, 1]∣∣∣∣∣cos(2πx)−

Nε∑
n=0

(−1)n

(2n)!
(2πx)2n

∣∣∣∣∣ ≤ (2π)4Nε+2

(2Nε + 1)!
≤ ε

2
.

By the polynomial approximation theorem, there hence exists a
network Φε/2 such that

‖Φε/2 − cos(2π · )‖L∞([0,1]) ≤ ε.



Approx. of cos(2πax) using iterated “sawtooth” functions

x 7→ cos(2πx) is 1-periodic and

even. Recall the “sawtooth”

functions gs : [0, 1]→ [0, 1] and

note that

cos(2π2sx) = cos(2πgs(x)).

This “periodization trick”

avoids coefficients of

magnitude a2Nε , coming from

Taylor polynomial for cos(ax).



Approximation of cos(ax) – Proof

For every a > 0, there exists a Ca ∈ (1/2, 1] such that
a/(2π) = Ca2

dlog(a)−log(2π)e. It then follows that∥∥∥Φε/2

(
gdlog(a)−log(2π)e(Ca|x|)

)
− cos

(
2πgdlog(a)−log(2π)e(Ca|x|)

)∥∥∥
L∞([−1,1])

=
∥∥∥Φε/2

(
gdlog(a)−log(2π)e(Ca|x|)

)
− cos(ax)

∥∥∥
L∞([−1,1])

≤ ε.

Extension to arbitrary domains [−D,D] through scaling arguments.



Deep neural network approximation of signal classes

So far approximation of individual functions.

Now approximation of entire function classes C.

Main goal

Establish a relationship between complexity of C and complexity
of corresponding approximating networks.

Consider networks with quantized weights.

Network complexity measured in terms of number of bits
needed to store network topology and quantized weights.



Asymptotic min-max rate distortion theory

A. N. Kolmogorov
D. Donoho

Definition

Let d ∈ N, Ω ⊂ Rd, and consider compact C ⊂ L2(Ω).
Encoders and decoders:

E` :=
{
E : C → {0, 1}`

}
D` :=

{
D : {0, 1}` → L2(Ω)

}



Optimal exponent

Definition

Minimax code length:

L(ε, C) := min
{
` ∈ N : ∃(E,D) ∈ E` ×D` :

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε

}
Optimal exponent:

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
γ∗(C) quantifies “description complexity of function class C
Larger γ∗(C) ⇒ smaller growth rate ⇒ smaller memory
requirements for storing signals f ∈ C



Kolmogorov-Tikhomirov ε-entropy

Bε(f0) = {g : ‖g− f0‖L2 ≤ ε} is the ball of radius ε around f0.

ε-net for C is a finite collection of points (fi)
N
i=1 in L2 such that

C ⊂
N⋃
i=1

Bε(fi).

N(ε, C) is the minimum possible cardinality of any such ε-net.

Kolmogorov-Tikhomirov ε-entropy of C is Hε(C) = log2N(ε, C).



Kolmogorov-Tikhomirov ε-entropy cont’d

Binary encoding of ball centers yields distortion upper-bounded
by ε with L(ε, C) = dlog2N(ε, C)e.

When C is not a finite set, then Hε(C)→∞ as ε→ 0.

In many interesting cases Hε(C) � ε−1/α or
Hε(C) � ε−1/α log(ε−1)β for some α, β > 0.

Optimal exponent

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
is hence a crude measure of growth.



Nonlinear approximation through dictionaries

Definition (Best M -term approximation rate)

Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and a dictionary
D = (ϕi)i∈I ⊂ L2(Ω), the supremal γ > 0 so that

sup
f∈C

inf
IM⊆I,

#IM=M, (ci)i∈IM

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

∈ O(M−γ), M →∞,

will be denoted by γ∗(C,D) and referred to as best M -term
approximation rate of C in the dictionary D.



Function classes and dictionaries

Function classes C typically studied in the literature include unit
balls in Lebesgue, Sobolev, or Besov spaces.

Dictionaries: Wavelets, ridgelets, curvelets, shearlets, parabolic
molecules, α-molecules, Gabor frames, Wilson frames, local
cosine bases, and wave atoms.



Hardness of approximation

γ∗(C,D) quantifies how well function class C can be
approximated in dictionary D.

Larger γ∗(C,D) means better approximation.

For given C, is there a fundamental limit on γ∗(C,D) when one
is allowed to vary over D?

Every dense (and countable) D results in γ∗(C,D) =∞.

However, identifying and storing the optimal set of participating
elements in D is practically infeasible as it requires

searching an infinite set

infinitely many bits to store the corresponding indices



Effective best M -term approximation [Donoho, 1993]

Restrict search for the M elements in D participating in the
best M -term representation to the first π(M) elements, with π
a polynomial.

Require that the coefficients ci in the best M -term
approximation fM =

∑
i∈IM ciϕi be uniformly bounded so that

they can be quantized and stored with a finite number of bits.



Formal definition

Definition (Effective best M -term approximation rate)

Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and a dictionary
D = (ϕi)i∈I ⊂ L2(Ω), the supremal γ > 0 so that there exist a
polynomial π and a constant D > 0 such that

sup
f∈C

inf
IM⊂{1,2,...,π(M)},
#IM=M, (ci)i∈IM

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

∈ O(M−γ), M →∞,

where maxi∈IM |ci| ≤ D, will be denoted γ∗,eff(C,D) and referred to
as effective best M -term approximation rate of C in the dictionary D.



Optimal representability by dictionaries

Theorem (Donoho, 1993, Grohs, 2015)

Let d ∈ N and Ω ⊂ Rd. The effective best M -term approximation
rate of the function class C ⊂ L2(Ω) in the dictionary D ⊂ L2(Ω)
satisfies

γ∗,eff(C,D) ≤ γ∗(C).

Definition (Optimal representability of a function class by D)

Let d ∈ N and Ω ⊂ Rd. If the effective best M -term approximation
rate of the function class C ⊂ L2(Ω) in the dictionary D ⊂ L2(Ω)
satisfies

γ∗,eff(C,D) = γ∗(C),

we say that the function class C is optimally representable by D.



Back of the envelope calculation

Polynomial-depth search and bounded coefficients lead to
Kolmogorov-optimal approximation

Need M log(π(M)) = O(M log(M)) bits to represent indices of
participating dictionary elements.

Coefficients ci quantized by rounding to integer multiples of
dM−αe for some α ⇒ O(M log(M)) bits to represent quantized
coefficients.



Back of the envelope cont’d

Encoder-decoder pair reconstructing f from O(M log(M)) bits

with ε ≈M−γ∗,eff(C,D)

For D optimally representing C, we have γ∗,eff(C,D) = γ∗(C)

Resulting code length

M log(M) = ε−1/γ∗(C) log(ε−1/γ∗(C)) = O(ε−1/γ∗(C))



Function classes and their optimal exponents

Class F optimal dictionary γ∗(C)
L2-Sobolev Wm

2 Fourier or Wavelet m
Lp-Sobolev Wm

p Wavelet m

Hölder Cα Wavelet α

Bump Algebra B1
1,1 Wavelet 1

Bounded Variation BV Haar 1

Segal Algebra S Wilson 1/2

Besov ∗ Bs
p,q Wavelet s

Modulation ∗∗ Mp Wilson (−1/2 + 1/p)−1

* q > (s+ 1/2)−1

** 1 ≤ p < 2



Approximation with deep neural networks

We develop the new concept of best M-weight
approximation through deep neural networks

Neural network interpreted as an encoder and evaluated in
Kolmogorov-Donoho framework

Need to encode network topology and quantized weights

Need to control quantization-induced error



Best M -weight approximation

Definition (Best M -weight approximation rate)

Let d ∈ N, Ω ⊂ Rd, and C ⊂ L2(Ω) be a function class. The
supremal γ > 0 so that

sup
f∈C

inf
Φ∈NN∞,M,d,1

‖f − Φ‖L2(Ω) ∈ O(M−γ), M →∞,

is referred to as best M -weight approximation rate of C by neural
networks and will be denoted γ∗NN (C).

Infimum over all networks with no more than M weights and
arbitrary depth L, in particular over all possible network
topologies

Best M -weight approximation rate benchmarks all learning
algorithms that map an f and an ε > 0 to a neural network



Effective best M -weight approximation rate

For dictionaries, polynomial depth search constraint made to
allow encoding of indices with O(M log(M)) bits.

Tree-like structure of network automatically guarantees that
nonzero network weight positions can be encoded with
O(M log(M)) bits.

Total number of weights in network can not exceed
L(Φ)W(Φ)(W(Φ) + 1) ⇒ O(M3) possibilities for locations of
M nonzero weights.

Encoding of locations of M nonzero weights requires

log(
(
M3

M

)
) = O(M log(M)) bits.



Effective best M -weight approximation rate

Network layout, i.e., L and the Nk can be encoded with
O(M log(M)) bits.

Inspired by results in first part of the course, we impose
L(Φ) = O(log(ε−1)).

Since we are interested in approximation error decaying as M−γ ,
this suggests to have L(Φ) grow poly-logarithmically in log(M).



Weight growth conditions

In dictionary approximation weights were assumed uniformly
bounded.

More generous condition in neural network approximation, will
allow weights to grow polynomially in M .

Can convert networks with weight growth polynomial in M to
networks with bounded weights at expense of depth increase,
but depth scaling remains poly-log in M .

In summary, we have the concept of best M -weight approximation
subject to polylogarithmic depth and polynomial weight growth.



Effective best M -weight approximation rate

Definition (Effective best M -weight approximation rate)

Let d ∈ N, Ω ⊂ Rd, and C ⊂ L2(Ω) be a function class. The
supremal γ > 0 so that there is a polynomial π such that

sup
f∈C

inf
Φ∈NNπ(M)

π(log(M)),M,d,1

‖f − Φ‖L2(Ω) ∈ O(M−γ), M →∞,

is referred to as effective best M -weight approximation rate of C by
neural networks and will be denoted by γ∗,eff

NN (C).



Optimal representability by neural networks

Theorem

Let d ∈ N, Ω ⊂ Rd be bounded, and C ⊂ L2(Ω). Then, we have

γ∗,eff
NN (C) ≤ γ∗(C).

Definition (Optimal representability of a function class by NNs)

For d ∈ N and Ω ⊂ Rd bounded, we say that the function class
C ⊂ L2(Ω) is optimally representable by neural networks if

γ∗,eff
NN (C) = γ∗(C).



Quantization of weights

Definition

Let m ∈ N and ε ∈ (0, 1/2). The network Φ is said to have
(m, ε)-quantized weights if all its weights are elements of
2−mdlog(ε−1)eZ ∩ [−ε−m, ε−m].

Lemma

Let B, k ∈ N, Ω ⊆ [−B,B]d, ε ∈ (0, 1/2), and M ≤ ε−k. Further,
let Φ ∈ NNL,M,d,d′ with B(Φ) ≤ ε−k and let m ∈ N be such that

m ≥ 3kL+ log(max{1, B}).

Then, there exists a network Φ̃ ∈ NNL,M,d,d′ with (m, ε)-quantized
weights satisfying

sup
x∈Ω
‖Φ(x)− Φ̃(x)‖∞ ≤ ε.



Quantization back of the envelope

−ε−m ε−m0 εm 2εm−εm. . . . . .

εm

2ε−m

# of pieces of size εm: 2ε−m

εm = 2ε−2m

# of possible weight values: 2ε−2m + 1

# of bits needed to encode weight:
log(2 ε−2m + 1) ≤ log(3 ε−2m) ≤ 2m log(ε−1) + 2

Summary: # of bits needed to encode (m, ε)-quantized weight is
O(m log(1/ε)).



Minimum connectivity growth rate

Proposition

Let Ω ⊂ Rd, C ⊂ L2(Ω), and let π be a polynomial. Further, let

Ψ :

(
0,

1

2

)
× C → NN∞,∞,d,d′

be a map such that for every f ∈ C, ε ∈ (0, 1/2), the network Ψ(ε, f)
has (dπ(log(ε−1))e, ε)-quantized weights and satisfies

sup
f∈C
‖f −Ψ(ε, f)‖L2(Ω) ≤ ε.

Then,

sup
f∈C
M(Ψ(ε, f)) /∈ O

(
ε−1/γ

)
, ε→ 0, for all γ > γ∗(C).



Connectivity growth rate

Connectivity growth rate of networks achieving uniform
approximation error ε must exceed

(
ε−1/γ∗(C)) , ε→ 0.

For connectivity growing according to
(
ε−1/γ

)
, ε→ 0 with

γ > γ∗(C), we have a strong converse.

Proposition

Let d ∈ N, Ω ⊂ Rd be bounded, π a polynomial, and C ⊂ L2(Ω).
Then, for all C > 0 and γ > γ∗(C), we have

sup
f∈C

inf
Φ∈NNπ(M)

π(log(M)),M,d,1

‖f − Φ‖L2(Ω) ≥ CM−γ ,

for infinitely many M ∈ N.



Function classes and their optimal exponents

Class F optimal dictionary γ∗(C)
L2-Sobolev Wm

2 Fourier or Wavelet m
Lp-Sobolev Wm

p Wavelet m

Hölder Cα Wavelet α

Bump Algebra B1
1,1 Wavelet 1

Bounded Variation BV Haar 1

Segal Algebra S Wilson 1/2

Besov ∗ Bs
p,q Wavelet s

Modulation ∗∗ Mp Wilson (−1/2 + 1/p)−1

* q > (s+ 1/2)−1

** 1 ≤ p < 2



Transitioning from dictionaries to neural networks

We build a theory for transferring optimal approximation

results for dictionaries to optimal approximation results for

neural networks.

For given C and associated D, we establish conditions

guaranteeing the existence of a neural network with connectivity

O(M) that achieves the same uniform error over C as best

M -term approximation.

Leads to a characterization of function classes C that are

optimally representable by neural networks.



Effective representability of dictionaries by neural networks

Definition

Let d ∈ N, Ω ⊆ Rd, and D = (ϕi)i∈N ⊂ L2(Ω) be a dictionary. Then,

D is said to be effectively representable by neural networks, if

there exists a bivariate polynomial π such that for all i ∈ N,

ε ∈ (0, 1/2), there is a neural network Φi,ε ∈ NN∞,∞,d,1 satisfying

M(Φi,ε) ≤ π(log(ε−1), log(i)), B(Φi,ε) ≤ π(ε−1, i), and

‖ϕi − Φi,ε‖L2(Ω) ≤ ε.



Optimality transfer

Central result

Optimality of a representation system D for a signal class C combined
with effective representability of D by neural networks implies optimal
representability of C by neural networks.

Optimal dictionaries

Affine dictionaries (e.g. wavelets, ridgelets, curvelets, shearlets,
α-shearlets) are optimally representable by neural networks.



Affine dictionaries

Definition (Affine dictionary)

Consider the compactly supported functions

gs :=
r∑

k=1

cskf(· − bk), s = 0, . . . , S.

We define the affine dictionary D ⊂ L2(Ω) corresponding to (gs)
S
s=0

according to

D :=
{
gj,es :=

(
|det(Aj)|

1
2 gs(Aj · − δe)

) ∣∣
Ω

: s ∈ {1, 2, . . . , S}, e ∈ Zd,

j ∈ N, and gj,es 6= 0
}
∪ {ge0 := g0(· − δe)

∣∣
Ω

: e ∈ Zd and ge0 6= 0},

and refer to f as the generator (function) of D.

Includes wavelets, ridgelets, curvelets, shearlets, α-shearlets, and
more generally α-molecules.



Invariance to Affine Transformations

Proposition

Let f ∈ Lp(Rd). Assume that there exists a bivariate polynomial π1

such that for all D ∈ R+, ε ∈ (0, 1/2), there is a network
ΦD,ε ∈ NN∞,∞,d,1 satisfying

‖f − ΦD,ε‖Lp([−D,D]d) ≤ ε,

with M(ΦD,ε) ≤ π1(log(ε−1), log(dDe)). Then, there exists a
bivariate polynomial π2 such that for all A, e,E, and η ∈ (0, 1/2),
there is a network ΨA,e,E,η ∈ NN∞,∞,d,1 satisfying∥∥∥|det(A)|

1
p f(A · − e)−ΨA,e,E,η

∥∥∥
Lp([−E,E]d)

≤ η,

with M(ΨA,e,E,η) ≤ π2(log(η−1), log(dE‖A‖∞ + ‖e‖∞e)).
Polynomial weight growth inherited as well.



Invariance to Affine Transformations cont’d

Proposition

Let f ∈ Lp(Rd). Assume that there is a network ΦD,ε ∈ NN∞,∞,d,1
satisfying

‖f − ΦD,ε‖Lp([−D,D]d) ≤ ε,

with M(ΦD,ε) ≤ π1(log(ε−1), log(dDe)). Then, there exists a
polynomial π2 such that for all ci, bi, E, and η ∈ (0, 1/2), there is a
network Ψc,b,E,η ∈ NN∞,∞,d,1 satisfying∥∥∥∥∥

r∑
i=1

cif(· − bi)−Ψc,b,E,η

∥∥∥∥∥
Lp([−E,E]d)

≤ η,

with M(Ψc,b,E,η) ≤ π2(log(η−1
c ), log(Eb)), where

Eb = dE + maxi=1,...,r ‖bi‖∞e and ηc = η/max{1,
∑r

i=1 |ci|}.
Polynomial weight growth inherited as well.



Optimal representation

Theorem

Let D = (ϕi)i∈N ⊂ L2(Ω) be an affine dictionary with generator
function f . Assume that there exists a network ΦD,ε ∈ NN∞,∞,d,1
satisfying

‖f − ΦD,ε‖L2([−D,D]) ≤ ε,

with M(ΦD,ε) ≤ π(log(ε−1), log(dDe)) and B(ΦD,ε) ≤ π(ε−1, D).
Assume furthermore that there exist a, c > 0 such that

j−1∑
k=1

| det(Ak)| ≥ c‖Aj‖a∞, for all j ∈ N, j ≥ 2.

Then, D is effectively representable by neural networks.



Optimal representation

Theorem

Let D = (ϕi)i∈N ⊂ L2(Ω) be an affine dictionary that is effectively

representable by neural networks. Then, we have

γ∗,eff
NN (C) ≥ γ∗,eff(C,D)

for all function classes C ⊆ L2(Ω).

In particular, if C is optimally representable by D, i.e.,

γ∗,eff(C,D) = γ∗(C), then

γ∗(C) ≥ γ∗,eff
NN (C) ≥ γ∗,eff(C,D) = γ∗(C)

and hence C is optimally representable by neural networks, i.e.,

γ∗,eff
NN (C) = γ∗(C).



Spline wavelets

Definition

Let N1 := χ[0,1] and for m ∈ N, define

Nm+1 := N1 ∗Nm.

We refer to Nm as the univariate cardinal B-spline of order m.

Lemma (Spline approximation)

Let m ∈ N. Then, there exist a constant C > 0 and a polynomial π
such that for all D ∈ R+, ε ∈ (0, 1/2), there is a neural network
ΦD,ε ∈ NN∞,∞,1,1 satisfying

‖ΦD,ε −Nm‖L∞([−D,D]) ≤ ε,

with M(ΦD,ε) ≤ C(log(ε−1) + log(dDe)) and B(ΦD,ε) ≤ π(D).



Spline approximation – Proof idea

The proof is based on the following representation

Nm(x) =
1

m!

m+1∑
k=0

(−1)k
(
m+ 1
k

)
ρ((x− k)m).

Next – use network that approximates polynomials.



Spline wavelet systems

Theorem (Chui & Wang, 1992)

Let m ∈ N and consider the m-th order spline

ψm(x) =
1

2m−1

2m−2∑
j=0

(−1)jN2m(j + 1)
dm

dxm
N2m(2x− j),

with support [0, 2m− 1]. The set

Wm :={ψk,n(x) = 2k/2ψm(2kx− n) : n ∈ Z, k ∈ N0}∪
{φn(x) = Nm(x− n) : n ∈ Z}

is a countable complete orthonormal wavelet basis in L2(R).



Optimality

Theorem

Let Ω ⊂ R be bounded and D = (ϕi)i∈N ⊂ L2(Ω) a spline wavelet
system. Then, all function classes C ⊆ L2(Ω) that are optimally
representable by D, are optimally representable by neural networks.



Gabor systems

Definition (Gabor systems)

Let d ∈ N, f ∈ L2(Rd), and x, ξ ∈ Rd. Define the translation
operator Tx : L2(Rd)→ L2(Rd) according to

Txf(t) := f(t− x)

and the modulation operator Mξ : L2(Rd)→ L2(Rd,C) as

Mξf(t) := e2πi〈ξ,t〉f(t).

Let Ω ⊆ Rd, α, β > 0, and g ∈ L2(Rd). The Gabor system
G(g, α, β,Ω) ⊆ L2(Ω) is defined as

G(g, α, β,Ω) :=
{
MξTxg

∣∣
Ω

: (x, ξ) ∈ αZd × βZd
}
.



Gabor systems

We again build on invariance results.

Suppose that generator function g is well approximated by
neural networks satisfying growth conditions on connectivity and
weight sizes.

Invariance to time-shifts: Follows by realizing that time-shift
can be incorporated into first network layer.

Invariance to frequency-shifts: Follows from result on cosine
approximation network with periodicity and sawtooth twist
guaranteeing that weights of approximating polynomial do not
depend on frequency. Also uses result on multiplication
network.



Effective representability

Theorem

Let g ∈ L2(Rd) ∩L∞(Rd), and let G(g, α, β,Ω) be the corresponding
Gabor system. Suppose that there is a network ΦD,ε ∈ NN∞,∞,d,1
satisfying

‖g − ΦD,ε‖L∞([−D,D]d) ≤ ε,

with M(ΦD,ε) ≤ π(log(ε−1), log(dDe)) and B(ΦD,ε) ≤ π(ε−1, D).
Then, G(g, α, β,Ω) is effectively representable by neural networks.



Optimality

Theorem

Let g ∈ L2(Rd) ∩ L∞(Rd), and let G(g, α, β,Ω) be a Gabor system
that is effectively representable by neural networks. Then, for all
function classes C ⊆ L2(Ω),

γ∗,eff
NN (C) ≥ γ∗,eff(C,G(g, α, β,Ω)).

In particular, if C is optimally representable by G(g, α, β,Ω), i.e.,

γ∗,eff(C,G(g, α, β,Ω)) = γ∗(C), then

γ∗(C) ≥ γ∗,eff
NN (C) ≥ γ∗,eff(C,G(g, α, β,Ω)) = γ∗(C),

and C is optimally representable by neural networks, i.e.,
γ∗,eff
NN (C) = γ∗(C).



Wilson systems

Definition (Wilson system)

Let g ∈ L2(R). We define the Wilson system with generator g to
be the family

ψk,`(x) :=


g(x− k), if ` = 0;
√

2 cos(2π`x)g
(
x− k

2

)
, ` ∈ N, `+ k even;

√
2 sin(2π`x)g

(
x− k

2

)
, ` ∈ N, `+ k odd.

When g is such that the Wilson system constitutes a basis for
L2(R), we call (ψk,`)k∈Z, `∈N a Wilson basis.



Applications of Wilson systems

Wilson bases are unconditional bases for modulation spaces
[Feichtinger and Gröchenig, 1989], including Bessel potential
spaces, the Segal algebra S0, and the Schwartz space.

Wilson bases are optimal dictionaries for modulation spaces
[Gröchenig, 2000], [Donoho, 1993].

occur in pseudo-differential calculus



Basic definitions

Definition (Modulation spaces (Feichtinger and Gröchenig, 1989))

For p with 1 ≤ p <∞, the modulation space Mp(R) is the space of
functions f : R→ R satisfying

‖f‖Mp =
(∫

R

(∫
R
|Sgf(x, y)|pdx

)
dy
)1/p

<∞,

where

Sgf(x, y) :=

∫
R
f(t)g(t− x)e−2πiytdt

denotes the short-time Fourier transform (STFT).



Wilson basis with compactly supported generator

Consider the generator function

g(x) =
√

2s
(
x+

1

4

)
c
(
x− 1

4

)
,

s(x) = sin(θ(x) + π/4), c(x) = cos(θ(x) + π/4)

and

θ(x) =


π
4 , if x ≥ 1

4 ,

−π
4 , if x ≤ −1

4 ,

96πx5 − 20πx3 + 15π
8 x, else.



Effective representability for Wilson systems

Theorem

Let g ∈ L2(R) be compactly supported and bounded, let W(g) be
the corresponding Wilson system, and assume that there is a neural
network Φε ∈ NN∞,∞,1,1 satisfying M(Φε) ≤ π(log(ε−1)),
B(Φε) ≤ π(ε−1), and

‖g − Φε‖L∞(R) ≤ ε.

Then, W(g) is effectively representable by neural networks.

The entire Wilson system can be well approximated by neural
networks.



Optimal representation by neural networks

Theorem

Let g ∈ L2(R) be such that W(g) is effectively representable by

neural networks. Then,

γ∗,eff
NN (C) ≥ γ∗,eff(C,W(g)).

In particular, if C is optimally representable by W(g), i.e.,

γ∗,eff(C,W(g)) = γ∗(C), then C is optimally representable by neural

networks, i.e., γ∗,eff
NN (C) = γ∗(C).



Oscillatory textures

Definition

Let the sets FD,a, D, a ∈ R+, be given by

FD,a =
{

cos(ag)h : g, h ∈ SD
}
.

Definition (Smooth functions)

For D ∈ R+, let the set SD ⊆ C∞([−D,D],R) be given by

SD =
{
f ∈ C∞([−D,D],R) : ‖f (n)(x)‖L∞([−D,D]) ≤ n!, n ∈ N0

}
Hard to approximate for a large due to combination of rapidly
oscillating cosine and warping function g.

Best known approximation rate is low-order polynomial by
[Demanet and Ying, 2007] using wave atom dictionaries.



Weierstrass function

Definition

Weierstrass function

Wp,a(x) =

∞∑
k=0

pk cos(akπx), for p ∈ (0, 1/2), a ∈ R+, with ap ≥ 1.

A fractal function which is continuous everywhere but
differentiable nowhere.

Classical methods exploit Hölder smoothness and achieve
polynomial approximation rates.



Oscillatory textures and Weierstrass function

Left: A function in F1,100. Right: The function W 1√
2
,2.

No known approximation algorithms achieving exponential accuracy.
⇒ These functions are “hard” to approximate.



Oscillatory textures

Proposition

Let f ∈ FD,a. There exists a network Γf,ε ∈ NN∞,∞,1,1 satisfying

‖f − Γf,ε‖L∞([−D,D]) ≤ ε,

with L(Γf,ε) ≤ CdDe(log(ε−1) + log(dae))2, W(Γf,ε) ≤ 23, and
B(Γf,ε) ≤ max{1/D, dDe}π((ε/dae)−1).

Neural networks approximate functions in FD,a with exponential
accuracy.



Weierstrass function

Proposition

There exists a neural network Ψp,a,D,ε ∈ NN∞,∞,1,1 satisfying

‖Ψp,a,D,ε −Wp,a‖L∞([−D,D]) ≤ ε,

with L(Ψp,a,D,ε) ≤ C((log(1/ε))3 + (log(1/ε))2 log(dae) +

log(1/ε) log(dDe)),W(Ψp,a,D,ε) ≤ 20, and B(Ψp,a,D,ε) ≤ C.

Neural networks approximate the Weierstrass function with
exponential accuracy.



The case for depth

For periodic functions, finite-width deep networks require
asymptotically—in the function’s “highest frequency”—smaller
connectivity than finite-depth wide networks.

This statement is then extended to sufficiently smooth non-periodic
functions, thereby establishing the benefit of depth for a wide class of
functions.



ReLU networks realize sawtooth functions

Definition

Let k ∈ N. A function f : R→ R is called k-sawtooth if it is
piecewise linear with no more than k pieces, i.e., its domain R can be
partitioned into k intervals such that f is linear on each interval.

Lemma (Telgarsky, 2015)

Every Φ ∈ NN∞,∞,1,1 is (2W(Φ))L(Φ)-sawtooth.



Measure of non-linearity

Definition

For a u-periodic function f ∈ C(R), we define

ξ(f) := sup
δ∈[0,u)

inf
c,d∈R

‖f(x)− (cx+ d)‖L∞([δ,δ+u]).

ξ(f) measures the error incurred by the best linear approximation of
f on any segment of length equal to the period of f ; it can hence be
interpreted as quantifying the non-linearity of f .



Finite-depth networks

Finite-depth networks with width scaling poly-logarithmically in the
“highest frequency” of the periodic function to be approximated can

not achieve arbitrarily small approximation error.



Impossibility result

Proposition

Let f ∈ C(R) be a non-constant u-periodic function, L ∈ N, and π a
polynomial. Then, there exists an a ∈ N such that for every network
Φ ∈ NNL,∞,1,1 with W(Φ) ≤ π(log(a)),

‖f(a · )− Φ‖L∞([0,u]) ≥ ξ(f) > 0.

ξ(cos) > 0

Approximation of f(x) = cos(ax) at arbitrarily small error with
finite-depth networks requires faster than poly-logarithmic
connectivity growth in a.



But deep networks can do this

Theorem (Cosine approximation)

There exists a constant C > 0 such that for every a,D ∈ R+,

ε ∈ (0, 1/2), there is a network Ψa,D,ε ∈ NN∞,∞,1,1 satisfying

L(Ψa,D,ε) ≤ C((log(1/ε))2 + log(daDe)), W(Ψa,D,ε) ≤ 16,

B(Ψa,D,ε) ≤ C, and

‖Ψa,D,ε − cos(a · )‖L∞([−D,D]) ≤ ε.



Smooth functions

Theorem (Frenzen et al., 2010)

Let f ∈ C3([a, b]) and consider a piecewise linear approximation of f
on [a, b] that is accurate to within ε in the L∞([a, b])-norm. The
minimal number of linear pieces required to accomplish this scales
according to

s(ε) ∼ c√
ε
, ε→ 0, where c =

1

4

∫ b

a

√
|f ′′(x)|dx.



Impossibility result for smooth function

Theorem

Let f ∈ C3([a, b]) with
∫ b
a

√
|f ′′(x)|dx > 0, L ∈ N, and π a

polynomial. Then, there exists ε > 0 such that for every network
Φ ∈ NNL,∞,1,1 with W(Φ) ≤ π(log(ε−1)),

‖f − Φ‖L∞([a,b]) > ε.

Any function that is at least three times continuously differentiable
cannot be approximated by finite-depth networks with connectivity
scaling poly-logarithmically in the inverse of the approximation error.



But deep networks can do this

Definition

For D ∈ R+, let the set SD ⊆ C∞([−D,D],R) be given by

SD =
{
f ∈ C∞([−D,D],R) : ‖f (n)(x)‖L∞([−D,D]) ≤ n!, n ∈ N0

}
Proposition (Smooth functions)

There exist a constant C > 0 and a polynomial π such that for all

D ∈ R+, f ∈ SD, and ε ∈ (0, 1/2), there is a network

Ψf,ε ∈ NN∞,∞,1,1 satisfying L(Ψf,ε) ≤ CdDe(log(ε−1))2,

W(Ψf,ε) ≤ 23, B(Ψf,ε) ≤ max{1/D, dDe}π(ε−1), and

‖Ψf,ε − f‖L∞([−D,D]) ≤ ε.

Weights can be converted to ≤ const. at poly-log increase in depth
and width ⇒ overall connectivity still poly-log in ε−1.
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